login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128765
Expansion of psi(q) * psi(q^10) / ( psi(q^2) * psi(q^5)) in powers of q where psi() is a Ramanujan theta function.
1
1, 1, -1, 0, 1, -1, -2, 0, 2, 0, 0, 2, 1, -1, -2, -2, 0, 1, -2, 0, 6, 3, -5, -2, 5, -3, -10, 2, 8, -1, -2, 6, 6, -2, -8, -6, 2, 2, -8, -2, 21, 11, -18, -4, 18, -11, -32, 4, 26, -1, -10, 18, 20, -8, -26, -18, 10, 8, -26, -2, 61, 27, -53, -12, 52, -26, -88, 12, 74, -6, -32, 42, 58, -17, -74, -40, 34, 16, -74, -8, 156, 66, -136, -26
OFFSET
0,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * eta(q^2)^3 * eta(q^5) * eta(q^20)^2 / (eta(q) * eta(q^4)^2 * eta(q^10)^3) in powers of q.
Euler transform of period 20 sequence [ 1, -2, 1, 0, 0, -2, 1, 0, 1, 0, 1, 0, 1, -2, 0, 0, 1, -2, 1, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^2) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (u - v)^2.
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(10*k))^2 / ( (1 + x^(2*k))^2* (1+x^(5*k)) ).
EXAMPLE
G.f. = 1 + x - x^2 + x^4 - x^5 - 2*x^6 + 2*x^8 + 2*x^11 + x^12 - x^13 + ...
G.f. = q + q^3 - q^5 + q^9 - q^11 - 2*q^13 + 2*q^17 + 2*q^23 + q^25 - q^27 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^5] / (EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(5/2)]), {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5 + A) * eta(x^20 + A)^2 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^10 + A)^3), n))};
CROSSREFS
Sequence in context: A221645 A216176 A359007 * A193511 A254218 A263147
KEYWORD
sign
AUTHOR
Michael Somos, Mar 25 2007
STATUS
approved