|
|
A128765
|
|
Expansion of psi(q) * psi(q^10) / ( psi(q^2) * psi(q^5)) in powers of q where psi() is a Ramanujan theta function.
|
|
1
|
|
|
1, 1, -1, 0, 1, -1, -2, 0, 2, 0, 0, 2, 1, -1, -2, -2, 0, 1, -2, 0, 6, 3, -5, -2, 5, -3, -10, 2, 8, -1, -2, 6, 6, -2, -8, -6, 2, 2, -8, -2, 21, 11, -18, -4, 18, -11, -32, 4, 26, -1, -10, 18, 20, -8, -26, -18, 10, 8, -26, -2, 61, 27, -53, -12, 52, -26, -88, 12, 74, -6, -32, 42, 58, -17, -74, -40, 34, 16, -74, -8, 156, 66, -136, -26
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Expansion of q^(-1/2) * eta(q^2)^3 * eta(q^5) * eta(q^20)^2 / (eta(q) * eta(q^4)^2 * eta(q^10)^3) in powers of q.
Euler transform of period 20 sequence [ 1, -2, 1, 0, 0, -2, 1, 0, 1, 0, 1, 0, 1, -2, 0, 0, 1, -2, 1, 0, ...].
Given g.f. A(x), then B(q) = q*A(q^2) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) - 3*u*v * (u - v)^2.
G.f.: Product_{k>0} (1 + x^k) * (1 + x^(10*k))^2 / ( (1 + x^(2*k))^2* (1+x^(5*k)) ).
|
|
EXAMPLE
|
G.f. = 1 + x - x^2 + x^4 - x^5 - 2*x^6 + 2*x^8 + 2*x^11 + x^12 - x^13 + ...
G.f. = q + q^3 - q^5 + q^9 - q^11 - 2*q^13 + 2*q^17 + 2*q^23 + q^25 - q^27 + ...
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^5] / (EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(5/2)]), {x, 0, n}]; (* Michael Somos, Apr 26 2015 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^5 + A) * eta(x^20 + A)^2 / (eta(x + A) * eta(x^4 + A)^2 * eta(x^10 + A)^3), n))};
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|