login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254218
T(n,k) = number of length n 1..(k+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.
14
1, 2, 0, 2, 0, 0, 3, 0, 1, 0, 3, 2, 3, 2, 1, 4, 2, 11, 4, 2, 0, 5, 8, 12, 22, 8, 2, 0, 6, 12, 32, 24, 56, 6, 2, 0, 6, 18, 48, 96, 70, 136, 15, 2, 0, 7, 18, 86, 168, 373, 192, 383, 18, 5, 0, 7, 28, 98, 388, 766, 1472, 633, 1070, 45, 4, 0, 8, 28, 172, 490, 2056, 3720, 6490, 2484, 3897
OFFSET
1,2
COMMENTS
Table starts
.1.2...2.....3.....3......4.......5........6........6.........7.........7
.0.0...0.....2.....2......8......12.......18.......18........28........28
.0.1...3....11....12.....32......48.......86.......98.......172.......183
.0.2...4....22....24.....96.....168......388......490......1024......1168
.1.2...8....56....70....373.....766.....2056.....2803......6705......8187
.0.2...6...136...192...1472....3720....11182....16698.....44652.....58174
.0.2..15...383...633...6490...18214....60168....97089....296955....420163
.0.2..18..1070..2484..28190...81428...316982...574274...2056696...3150280
.0.5..45..3897.10554.109811..362910..1788533..3605385..14593061..23955140
.0.4.118.13372.35054.428042.1828848.10469104.22736838.103347086.183929058
LINKS
EXAMPLE
Some solutions for n=4 k=4
..4....4....4....1....1....1....1....6....6....6....1....6....4....4....4....6
..6....2....2....3....5....5....5....3....3....4....5....2....2....5....6....4
..4....4....3....2....6....3....4....5....5....2....3....4....6....3....2....2
..6....6....1....4....4....6....6....1....4....4....1....6....4....6....4....6
CROSSREFS
Row 1 is A062298(n+2).
Column k=1 gives A254211.
Sequence in context: A359007 A128765 A193511 * A263147 A298100 A303636
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 26 2015
STATUS
approved