login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128768
Number of peak-avoiding compositions with positive parts.
2
1, 1, 2, 4, 7, 13, 22, 38, 64, 107, 177, 293, 481, 789, 1291, 2110, 3445, 5621, 9167, 14947, 24366, 39716, 64732, 105500, 171941, 280220, 456687, 744280, 1212984, 1976850, 3221762, 5250655, 8557248, 13946172, 22728787, 37042274, 60369723, 98387696, 160347599
OFFSET
0,3
LINKS
S. Heubach and T. Mansour, Enumeration of 3-letter patterns in combinations, arXiv:math/0603285 [math.CO], 2006.
FORMULA
The Heubach/Mansour paper has a complicated g.f.
MAPLE
b:= proc(n, t, l) option remember; `if`(n=0, 1, add(
b(n-j, is(j>l), j), j=max(1, `if`(t, l, 1))..n))
end:
a:= n-> b(n, false, n):
seq(a(n), n=0..40); # Alois P. Heinz, Oct 24 2017
MATHEMATICA
b[n_, t_, l_] := b[n, t, l] = If[n == 0, 1, Sum[b[n - j, j > l, j], {j, Max[1, If[t, l, 1]], n}]];
a[n_] := b[n, False, n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 11 2017, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(k^2+3*k+1)/Product[(1 - x^j), {j, 1, 2*k + 1}], {k, 0, Sqrt[nmax]}]/(1 + Sum[x^(k*(k + 2))/Product[(1 - x^j), {j, 1, 2*k}], {k, 1, Sqrt[nmax]}])), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 18 2020 *)
CROSSREFS
Cf. A128805.
Sequence in context: A188920 A281362 A319111 * A235607 A254007 A372782
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 08 2007
EXTENSIONS
More terms from Vladeta Jovovic, Oct 04 2007
STATUS
approved