login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128770
Expansion of phi(-q^9) / phi(-q) in powers of q where phi() is a Ramanujan theta function.
4
1, 2, 4, 8, 14, 24, 40, 64, 100, 152, 228, 336, 488, 700, 992, 1392, 1934, 2664, 3640, 4936, 6648, 8896, 11832, 15648, 20584, 26942, 35096, 45512, 58768, 75576, 96816, 123568, 157156, 199200, 251676, 316992, 398072, 498460, 622448, 775216, 963012
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^9)^2 / ( eta(q)^2 * eta(q^18) ) in powers of q.
Euler transform of period 18 sequence [ 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u-1) * (v^2-u) - 2*u*v * (1-v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (v-u)^3 - v*(3*u-1) * (1-v) * (1 - 2*v + 3*u*v).
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(9*k)) / ( (1 - x^k) * (1+x^(9*k)) ).
Convolution inverse of A128771. a(n) = 2*A128129(n) unles n = 0.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 14*x^4 + 24*x^5 + 40*x^6 + 64*x^7 + 100*x^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^9] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(9*k)) / ((1-x^k) * (1+x^(9*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A)^2 / (eta(x + A)^2 * eta(x^18 + A)), n))};
CROSSREFS
Sequence in context: A090399 A069251 A261988 * A280947 A069252 A365667
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 27 2007
STATUS
approved