Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 12 2021 22:24:44
%S 1,2,4,8,14,24,40,64,100,152,228,336,488,700,992,1392,1934,2664,3640,
%T 4936,6648,8896,11832,15648,20584,26942,35096,45512,58768,75576,96816,
%U 123568,157156,199200,251676,316992,398072,498460,622448,775216,963012
%N Expansion of phi(-q^9) / phi(-q) in powers of q where phi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A128770/b128770.txt">Table of n, a(n) for n = 0..1000</a>
%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], 2015-2016.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of eta(q^2) * eta(q^9)^2 / ( eta(q)^2 * eta(q^18) ) in powers of q.
%F Euler transform of period 18 sequence [ 2, 1, 2, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, ...].
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u-1) * (v^2-u) - 2*u*v * (1-v).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (v-u)^3 - v*(3*u-1) * (1-v) * (1 - 2*v + 3*u*v).
%F G.f.: Product_{k>0} (1 + x^k) * (1 - x^(9*k)) / ( (1 - x^k) * (1+x^(9*k)) ).
%F Convolution inverse of A128771. a(n) = 2*A128129(n) unles n = 0.
%F a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * 3^(3/2) * n^(3/4)). - _Vaclav Kotesovec_, Oct 13 2015
%e G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 14*x^4 + 24*x^5 + 40*x^6 + 64*x^7 + 100*x^8 + ...
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^9] / EllipticTheta[ 4, 0, q], {q, 0, n}]; (* _Michael Somos_, Apr 26 2015 *)
%t nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(9*k)) / ((1-x^k) * (1+x^(9*k))),{k,1,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Oct 13 2015 *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A)^2 / (eta(x + A)^2 * eta(x^18 + A)), n))};
%Y Cf. A128129, A128771.
%K nonn
%O 0,2
%A _Michael Somos_, Mar 27 2007