login
A365667
Expansion of Sum_{0<i<j<k<l<m} q^(2*(i+j+k+l+m)-5)/( (1-q^(2*i-1))*(1-q^(2*j-1))*(1-q^(2*k-1))*(1-q^(2*l-1))*(1-q^(2*m-1)) )^2.
3
1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 332, 480, 680, 944, 1304, 1774, 2384, 3180, 4200, 5488, 7120, 9160, 11680, 14869, 18740, 23468, 29280, 36278, 44720, 54904, 67040, 81464, 98658, 118936, 142792, 170902, 203760, 242120, 286624, 338366, 398160, 467148
OFFSET
25,2
LINKS
FORMULA
G.f.: -(1/5) * ( Sum_{k>=5} (-1)^k * k * binomial(k+4,9) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ).
CROSSREFS
A diagonal of A060047.
Cf. A015128.
Sequence in context: A128770 A280947 A069252 * A069253 A004402 A015128
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 15 2023
STATUS
approved