OFFSET
1,2
COMMENTS
Lengths of rows are 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 ... (A000196).
LINKS
G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*(2*m_1-1) + s_2*(2*m_2-1) + ... + s_k*(2*m_k-1) = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(2*m_1+2*m_2+...+2*m_k-k)/((1-q^{2*m_1-1})*(1-q^{2*m_2-1})*...*(1-q^{2*m_k-1}))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/k) * ( Sum_{j>=k} (-1)^j * j * binomial(j+k-1,2*k-1) * q^(j^2) ) / ( 1 + 2 * Sum_{j>=1} (-q)^(j^2) ). - Seiichi Manyama, Sep 15 2023
EXAMPLE
Triangle turned on its side begins:
1 2 4 4 6 8 8 8 13 12 12 ...
1 2 4 8 14 18 28 40 ...
1 2 4 ...
For example, T(6,1) = 8, T(6,2) = 4.
CROSSREFS
KEYWORD
nonn,tabf,easy,nice
AUTHOR
N. J. A. Sloane, Mar 19 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
STATUS
approved