OFFSET
1,4
COMMENTS
Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1+q^m_1)*(1+q^m_2)*...*(1+q^m_k)) = Sum_n T(n, k)*q^n.
EXAMPLE
Triangle turned on its side begins:
1 0 2 -1 2 0 2 -2 3 0 2 ...
1 0 1 2 1 1 1 6 -1 ...
1 0 1 0 5 -1 5 ...
MATHEMATICA
max = 27(*rows*); t[n_, k_] := Module[{m, mm, q, s}, mm = Array[m, k]; s = Sum[q^Total[mm]/Times @@ (1+q^mm), Evaluate[Sequence @@ Transpose[{mm, Join[{1}, Most[mm]+1], max-Range[k-1, 0, -1]}]]]; SeriesCoefficient[s, {q, 0, n}]]; Table[Print[an = Table[t[n, k], {k, Floor[(Sqrt[8*n+1]-1)/2], 1, -1}]]; an, {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 21 2014 *)
CROSSREFS
KEYWORD
sign,tabf,easy,nice
AUTHOR
N. J. A. Sloane, Mar 20 2001
EXTENSIONS
More terms from Vladeta Jovovic, Sep 20 2007
STATUS
approved