login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060183
a(0)=1, a(n) = 100*a(n-1) + 36*n - 128.
1
1, 8, 744, 74380, 7438016, 743801652, 74380165288, 7438016528924, 743801652892560, 74380165289256196, 7438016528925619832, 743801652892561983468, 74380165289256198347104
OFFSET
0,2
COMMENTS
The square roots of these numbers have some interesting properties; e.g., sqrt(a(8))= 2.7272727272727236363636363636339393939393939361616161616...*10^7. [corrected by Jon E. Schoenfield, Jul 03 2018]
FORMULA
a(n) = (9/121)*100^n + 112/121 - (4/11)*n. - Robert Israel
From R. J. Mathar, Feb 14 2010: (Start)
a(n) = 102*a(n-1) - 201*a(n-2) + 100*a(n-3).
G.f.: -(1-94*x+129*x^2)/((100*x-1) * (x-1)^2). (End)
MAPLE
a := proc(n) option remember: if n=0 then RETURN(1) fi: 100 * a(n-1) + 36 * n - 128 end: for n from 0 to 30 do printf(`%d, `, a(n)) od:
PROG
(PARI) { for (n=0, 100, if (n==0, a=1, a=100*a + 36*n - 128); write("b060183.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 02 2009
CROSSREFS
Sequence in context: A240283 A181153 A184974 * A262353 A268148 A145415
KEYWORD
nonn
AUTHOR
Jason Earls, Mar 19 2001
EXTENSIONS
More terms from James A. Sellers, Mar 26 2001
STATUS
approved