login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1, a(n) = 100*a(n-1) + 36*n - 128.
1

%I #16 Jul 03 2018 21:18:22

%S 1,8,744,74380,7438016,743801652,74380165288,7438016528924,

%T 743801652892560,74380165289256196,7438016528925619832,

%U 743801652892561983468,74380165289256198347104

%N a(0)=1, a(n) = 100*a(n-1) + 36*n - 128.

%C The square roots of these numbers have some interesting properties; e.g., sqrt(a(8))= 2.7272727272727236363636363636339393939393939361616161616...*10^7. [corrected by _Jon E. Schoenfield_, Jul 03 2018]

%H Harry J. Smith, <a href="/A060183/b060183.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (102, -201, 100).

%F a(n) = (9/121)*100^n + 112/121 - (4/11)*n. - _Robert Israel_

%F From _R. J. Mathar_, Feb 14 2010: (Start)

%F a(n) = 102*a(n-1) - 201*a(n-2) + 100*a(n-3).

%F G.f.: -(1-94*x+129*x^2)/((100*x-1) * (x-1)^2). (End)

%p a := proc(n) option remember: if n=0 then RETURN(1) fi: 100 * a(n-1) + 36 * n - 128 end: for n from 0 to 30 do printf(`%d,`,a(n)) od:

%o (PARI) { for (n=0, 100, if (n==0, a=1, a=100*a + 36*n - 128); write("b060183.txt", n, " ", a); ) } \\ _Harry J. Smith_, Jul 02 2009

%K nonn

%O 0,2

%A _Jason Earls_, Mar 19 2001

%E More terms from _James A. Sellers_, Mar 26 2001