OFFSET
1,2
COMMENTS
Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).
LINKS
Alois P. Heinz, Rows n = 1..500, flattened
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
T(n,k) = Partitions of n using only k types of piles. Also, Sum_{k=1..A003056(n)} T(n,k)*k = A000070(n). Also, Sum_{k=1..A003056(n)} T(n,k)*(k-1) = A058884(n). - Naohiro Nomoto, Jan 24 2002
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k)) = Sum_n T(n, k)*q^n.
EXAMPLE
Triangle turned on its side begins:
1 2 2 3 2 4 2 4 3 4 2 6 ...
1 2 5 6 11 13 17 22 27 29 ...
1 2 5 10 15 25 37 ...
1 2 5 ...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1) +x*add(b(n-i*j, i-1), j=1..n/i))))
end:
T:= n->(p->seq(coeff(p, x, degree(p)-k), k=0..degree(p)-1))(b(n$2)):
seq(T(n), n=1..25); # Alois P. Heinz, Jan 29 2014
MATHEMATICA
Reverse /@ Table[Length /@ Split[ Sort[Map[Length, Split /@ IntegerPartitions[n], {1}]]], {n, 24}] (* Wouter Meeussen, Apr 21 2012, updated by Jean-François Alcover, Jan 29 2014 *)
PROG
(Python)
from math import isqrt
from itertools import count, islice
from sympy.utilities.iterables import partitions
def A060177_gen(): # generator of terms
return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(isqrt((n<<3)+1)-1>>1, 0, -1))
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Mar 20 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
STATUS
approved