login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060177
Triangle of generalized sum of divisors function, read by rows.
15
1, 2, 1, 2, 2, 3, 5, 2, 1, 6, 4, 2, 11, 2, 5, 13, 4, 10, 17, 3, 1, 15, 22, 4, 2, 25, 27, 2, 5, 37, 29, 6, 10, 52, 37, 2, 20, 67, 44, 4, 1, 30, 97, 44, 4, 2, 52, 117, 55, 5, 5, 77, 154, 59, 2, 10, 117, 184, 68, 6, 20, 162, 235, 71, 2, 36, 227, 277, 81, 6, 1, 58, 309, 338
OFFSET
1,2
COMMENTS
Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
T(n,k) = Partitions of n using only k types of piles. Also, Sum_{k=1..A003056(n)} T(n,k)*k = A000070(n). Also, Sum_{k=1..A003056(n)} T(n,k)*(k-1) = A058884(n). - Naohiro Nomoto, Jan 24 2002
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k)) = Sum_n T(n, k)*q^n.
EXAMPLE
Triangle turned on its side begins:
1 2 2 3 2 4 2 4 3 4 2 6 ...
1 2 5 6 11 13 17 22 27 29 ...
1 2 5 10 15 25 37 ...
1 2 5 ...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
expand(b(n, i-1) +x*add(b(n-i*j, i-1), j=1..n/i))))
end:
T:= n->(p->seq(coeff(p, x, degree(p)-k), k=0..degree(p)-1))(b(n$2)):
seq(T(n), n=1..25); # Alois P. Heinz, Jan 29 2014
MATHEMATICA
Reverse /@ Table[Length /@ Split[ Sort[Map[Length, Split /@ IntegerPartitions[n], {1}]]], {n, 24}] (* Wouter Meeussen, Apr 21 2012, updated by Jean-François Alcover, Jan 29 2014 *)
PROG
(Python)
from math import isqrt
from itertools import count, islice
from sympy.utilities.iterables import partitions
def A060177_gen(): # generator of terms
return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(isqrt((n<<3)+1)-1>>1, 0, -1))
A060177_list = list(islice(A060177_gen(), 30)) # Chai Wah Wu, Sep 15 2023
CROSSREFS
Cf. A116608 (reflected rows). - Alois P. Heinz, Jan 29 2014
Sequence in context: A239239 A241701 A347662 * A347788 A238212 A377230
KEYWORD
nonn,tabf,easy,nice,look
AUTHOR
N. J. A. Sloane, Mar 20 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
STATUS
approved