login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060179
Sum of distinct orders of degree-n permutations.
4
1, 1, 3, 6, 10, 21, 21, 50, 73, 116, 167, 248, 385, 496, 728, 959, 1548, 1899, 2835, 3609, 5042, 6403, 8336, 12187, 15522, 21358, 26090, 35298, 44147, 62512, 76289, 101403, 123883, 156880, 200086, 254175, 335380, 413184, 505860, 615258, 810767, 980747, 1293953
OFFSET
0,3
LINKS
FORMULA
G.f.: Prod(p prime, 1 + Sum(k >= 1, p^k*x^(p^k))) / (1-x). - Vladeta Jovovic, Sep 18 2002
EXAMPLE
Set of orders of all degree 7 permutations is {1,2,3,4,5,6,7,10,12} so a(7)=1+2+3+4+5+6+7+10+12=50.
MAPLE
b:= proc(n, i) option remember; (p->`if`(i*n=0, 1,
add(b(n-p^j, i-1)*p^j, j=1..ilog[p](n))+
b(n, i-1)))(`if`(i=0, 0, ithprime(i)))
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 12 2017
MATHEMATICA
b[n_, i_] := b[n, i] = Function [p, If[i*n == 0, 1, Sum[b[n-p^j, i-1]*p^j, {j, 1, Floor@Log[p, n]}] + b[n, i-1]]][If[i == 0, 0, Prime[i]]];
a[n_] := b[n, PrimePi[n]];
a /@ Range[0, 50] (* Jean-François Alcover, Mar 14 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A009490.
Row sums of A256553.
Sequence in context: A122628 A343386 A068865 * A056411 A087597 A087598
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 19 2001
EXTENSIONS
More terms from David Wasserman, May 29 2002
a(0)=1 prepended by Alois P. Heinz, Apr 01 2015
STATUS
approved