login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060046
Generalized sum of divisors function: third diagonal of A060047.
4
1, 2, 4, 8, 14, 24, 40, 56, 84, 122, 168, 232, 312, 408, 528, 672, 865, 1078, 1336, 1648, 2002, 2424, 2912, 3472, 4116, 4872, 5744, 6648, 7752, 8976, 10304, 11872, 13566, 15424, 17556, 19896, 22414, 25256, 28336, 31584, 35462, 39482, 43728, 48664
OFFSET
9,2
LINKS
G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum((x^(2*n-1)/(1-x^(2*n-1))^2)^i,n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: -(1/3) * ( Sum_{k>=3} (-1)^k * k * binomial(k+2,5) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ). - Seiichi Manyama, Sep 15 2023
CROSSREFS
Cf. A015128.
Sequence in context: A344741 A280874 A243815 * A053801 A091778 A053802
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 19 2001
EXTENSIONS
More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007
STATUS
approved