login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280874
Expansion of Product_{k>=1} (1 - x^(6*k)) * (1 + x^k) / (1 - x^k).
1
1, 2, 4, 8, 14, 24, 39, 62, 96, 146, 218, 320, 463, 662, 936, 1310, 1816, 2496, 3404, 4608, 6196, 8278, 10994, 14520, 19076, 24938, 32448, 42032, 54218, 69656, 89149, 113680, 144456, 182952, 230966, 290688, 364774, 456446, 569600, 708938, 880128, 1089984
OFFSET
0,2
COMMENTS
Convolution of A219601 and A000009.
LINKS
Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010.
FORMULA
a(n) ~ Pi*sqrt(2) * BesselI(1, sqrt(8*n+2)*Pi/3) / (3*sqrt(12*n+3)).
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*2^(3/4)*n^(3/4)) * (1 + (Pi/6 - 9/(16*Pi))/sqrt(2*n) + (Pi^2/144 - 135/(1024*Pi^2) - 15/64)/n).
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1-x^(6*k))*(1+x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A281968 A091774 A344741 * A243815 A060046 A053801
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 09 2017
STATUS
approved