

A280872


Primes that have exactly 7 zeros and 7 ones in their binary expansion.


2



8287, 8311, 8317, 8423, 8429, 8527, 8539, 8563, 8599, 8627, 8629, 8647, 8677, 8681, 8689, 8783, 8807, 8819, 8821, 8861, 8933, 8999, 9011, 9013, 9043, 9049, 9059, 9109, 9137, 9157, 9161, 9277, 9319, 9323, 9337, 9371, 9397, 9419, 9421, 9433, 9511, 9547, 9613, 9619
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..189


EXAMPLE

8287 is in the sequence because it is a prime and its binary expansion 10000001011111 contains exactly 7 zeros and 7 ones.
9161 is in the sequence because it is a prime and its binary expansion 10001111001001 contains exactly 7 zeros and 7 ones.


MAPLE

select(t > isprime(t) and convert(convert(t, base, 2), `+`)=7, [seq(i, i=2^13+1..2^141, 2)]); # Robert Israel, Jan 09 2017


MATHEMATICA

Select[Prime[Range[50000]], Count[IntegerDigits[#, 2], 0] == Count[IntegerDigits[#, 2], 1] == 7 &]
Select[FromDigits[#, 2]&/@(Join[{1}, #]&/@Permutations[ {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0}]), PrimeQ]//Union (* Harvey P. Dale, May 10 2019 *)


CROSSREFS

Cf. A000040, A007088, A014311, A066196.
Sequence in context: A054215 A031589 A031769 * A329342 A237948 A250991
Adjacent sequences: A280869 A280870 A280871 * A280873 A280874 A280875


KEYWORD

nonn,base,fini,full


AUTHOR

K. D. Bajpai, Jan 09 2017


STATUS

approved



