The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317690 Coefficients of modular form for elliptic curve "96b1": y^2 = x^3 - x^2 - 2*x divided by q in powers of q^2. 1
1, -1, 2, 4, 1, -4, -2, -2, -6, 4, -4, 0, -1, -1, 2, -4, 4, 8, -2, 2, 2, -4, 2, -8, 9, 6, 10, -8, -4, 4, 6, 4, -4, -4, 0, 16, -6, 1, -16, -4, 1, -12, -12, -2, 10, -8, 4, 8, -14, -4, -6, 12, -8, 4, 14, 2, 2, 0, -2, -24, 5, -2, -12, 20, 4, -4, 16, -2, 18, 20, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96 (t/i)^2 f(t) where q = exp(2 Pi i t).
a(n) = b(2*n + 1) where b() is multiplicative with b(3^e) = (-1)^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p>3, where b(p) = p minus number of points of elliptic curve modulo p.
EXAMPLE
G.f. = 1 - x + 2*x^2 + 4*x^3 + x^4 - 4*x^5 - 2*x^6 - 2*x^7 - 6*x^8 + ...
G.f. = q - q^3 + 2*q^5 + 4*q^7 + q^9 - 4*q^11 - 2*q^13 - 2*q^15 - 6*q^17 + ...
MATHEMATICA
a[ n_] := Module[{x, y, p, e, a0, a1}, If[n < 1, Boole[n == 0], Times @@ ( If[# == 3, (-1)^#2, p = #; e = #2; a0 = 1; a1 = y = -Sum[KroneckerSymbol[x^3 - x^2 - 2*x, p], {x, p}]; Do[x = y a1 - p a0; a0 = a1; a1 = x, e - 1]; a1] & @@@ FactorInteger@(2 n + 1) )]];
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; my(A = elltaniyama(ellinit([0, -1, 0, -2, 0]), n)); polcoeff( x * deriv(A[1]) / (2*A[2]), n))};
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, n==0, A = factor(2*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; a0=1; if( p==3, (-1)^e, a1=y = -sum( x=1, p, kronecker(x^3 - x^2 - 2*x, p)); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))};
(Magma) qExpansion( ModularForm( EllipticCurve( [0, -1, 0, -2, 0])), 70);
(Magma) A := Basis( CuspForms( Gamma0(96), 2), 70); A[1] - A[3] + 2*A[5] + 4*A[7] + A[8] - 4*A[9];
(Sage)
def a(n):
return EllipticCurve("96b1").an(2*n+1) # Robin Visser, Jan 03 2024
CROSSREFS
Sequence in context: A143973 A011167 A014176 * A060047 A135185 A289460
KEYWORD
sign
AUTHOR
Michael Somos, Aug 04 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 18:53 EDT 2024. Contains 372880 sequences. (Running on oeis4.)