The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317690 Coefficients of modular form for elliptic curve "96b1": y^2 = x^3 - x^2 - 2*x divided by q in powers of q^2. 1
 1, -1, 2, 4, 1, -4, -2, -2, -6, 4, -4, 0, -1, -1, 2, -4, 4, 8, -2, 2, 2, -4, 2, -8, 9, 6, 10, -8, -4, 4, 6, 4, -4, -4, 0, 16, -6, 1, -16, -4, 1, -12, -12, -2, 10, -8, 4, 8, -14, -4, -6, 12, -8, 4, 14, 2, 2, 0, -2, -24, 5, -2, -12, 20, 4, -4, 16, -2, 18, 20, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robin Visser, Table of n, a(n) for n = 0..10000 LMFDB, Elliptic Curve 96.a3 (Cremona label 96b1). FORMULA G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 96 (t/i)^2 f(t) where q = exp(2 Pi i t). a(n) = b(2*n + 1) where b() is multiplicative with b(3^e) = (-1)^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) if p>3, where b(p) = p minus number of points of elliptic curve modulo p. EXAMPLE G.f. = 1 - x + 2*x^2 + 4*x^3 + x^4 - 4*x^5 - 2*x^6 - 2*x^7 - 6*x^8 + ... G.f. = q - q^3 + 2*q^5 + 4*q^7 + q^9 - 4*q^11 - 2*q^13 - 2*q^15 - 6*q^17 + ... MATHEMATICA a[ n_] := Module[{x, y, p, e, a0, a1}, If[n < 1, Boole[n == 0], Times @@ ( If[# == 3, (-1)^#2, p = #; e = #2; a0 = 1; a1 = y = -Sum[KroneckerSymbol[x^3 - x^2 - 2*x, p], {x, p}]; Do[x = y a1 - p a0; a0 = a1; a1 = x, e - 1]; a1] & @@@ FactorInteger@(2 n + 1) )]]; PROG (PARI) {a(n) = if( n<0, 0, n = 2*n + 1; my(A = elltaniyama(ellinit([0, -1, 0, -2, 0]), n)); polcoeff( x * deriv(A[1]) / (2*A[2]), n))}; (PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, n==0, A = factor(2*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; a0=1; if( p==3, (-1)^e, a1=y = -sum( x=1, p, kronecker(x^3 - x^2 - 2*x, p)); for( i=2, e, x = y*a1 - p*a0; a0=a1; a1=x); a1)))}; (Magma) qExpansion( ModularForm( EllipticCurve( [0, -1, 0, -2, 0])), 70); (Magma) A := Basis( CuspForms( Gamma0(96), 2), 70); A[1] - A[3] + 2*A[5] + 4*A[7] + A[8] - 4*A[9]; (Sage) def a(n): return EllipticCurve("96b1").an(2*n+1) # Robin Visser, Jan 03 2024 CROSSREFS Sequence in context: A143973 A011167 A014176 * A060047 A135185 A289460 Adjacent sequences: A317687 A317688 A317689 * A317691 A317692 A317693 KEYWORD sign AUTHOR Michael Somos, Aug 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 18:53 EDT 2024. Contains 372880 sequences. (Running on oeis4.)