login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069253
Number of basis partitions of n+100 with Durfee square size 10.
2
1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 342, 498, 714, 1010, 1414, 1956, 2678, 3634, 4886, 6514, 8618, 11316, 14754, 19112, 24600, 31472, 40038, 50656, 63754, 79844, 99514, 123460, 152500, 187572, 229770, 280364, 340806, 412768, 498176, 599216
OFFSET
0,2
LINKS
M. D. Hirschhorn, Basis partitions and Rogers-Ramanujan partitions, Discrete Math. 205 (1999), 241-243.
FORMULA
G.f.: (x^2 -x +1) * (x^2 +1) * (x^4 -x^2 +1) * (x^6 -x^5 +x^4 -x^3 +x^2 -x +1) * (x^6 -x^3 +1) * (x^8 -x^6 +x^4 -x^2 +1) * (x^8 +1) / ((x -1)^10 * (x^2 +x +1)^3 * (x^4 +x^3 +x^2 +x +1)^2 * (x^6 +x^3 +1) * (x^6 +x^5 +x^4+ x^3 +x^2 +x +1)). - Colin Barker, Jul 13 2013
PROG
(PARI) s=10; a(n)=polcoeff(prod(i=1, s, (1+x^i))/(prod(i=1, s, (1-x^i))+x*O(x^n)), n) for(n=0, 50, print1(a(n), ", "))
CROSSREFS
Column k=10 of A316723.
Sequence in context: A280947 A069252 A365667 * A004402 A015128 A208605
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Apr 13 2002
STATUS
approved