OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^2 * eta(q^4)^2 * eta(q^16)^2 / (eta(q^2)^5 * eta(q^8)) in powers of q.
Euler transform of period 16 sequence [ -2, 3, -2, 1, -2, 3, -2, 2, -2, 3, -2, 1, -2, 3, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 1/4 * g(t) where q = exp(2 Pi i t) and g() is g.f. for A208603.
EXAMPLE
q - 2*q^2 + 4*q^3 - 8*q^4 + 14*q^5 - 24*q^6 + 40*q^7 - 64*q^8 + 101*q^9 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]^2* eta[q^4]^2*eta[q^16]^2/(eta[q^2]^5*eta[q^8]), {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Jan 23 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^16 + A)^2 / (eta(x^2 + A)^5 * eta(x^8 + A)), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 29 2012
STATUS
approved