OFFSET
1,5
COMMENTS
coefficient of x^(n-1)=Fibonacci(n)=A000045(n)
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
1...1
1...3...2
1...5...6....3
1...7...12...12...5
First five polynomials u(n,x):
1
1 + x
1 + 3x + 2x^2
1 + 5x + 6x^2 + 3x^3
1 + 7x + 12x^2 + 12x^3 + 5x^4
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208608 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208609 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 29 2012
STATUS
approved