login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209577
Triangle of coefficients of polynomials u(n,x) jointly generated with A209578; see the Formula section.
3
1, 1, 1, 3, 2, 1, 5, 6, 3, 1, 9, 13, 10, 4, 1, 15, 28, 26, 15, 5, 1, 25, 56, 64, 45, 21, 6, 1, 41, 109, 146, 124, 71, 28, 7, 1, 67, 206, 319, 315, 216, 105, 36, 8, 1, 109, 382, 671, 758, 602, 349, 148, 45, 9, 1, 177, 697, 1372, 1744, 1576, 1056, 533, 201, 55, 10
OFFSET
1,4
COMMENTS
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
The coefficients in the triangle seem to be T(n,m) = sum(k=0,n-m,2 * binomial(m+k, m)*binomial(k, n-k-m) - sum(i=0, n-m-k, binomial(m+k-1,k)*binomial(k,n-m-i-k))) by using the PARI syntax. - Thomas Baruchel, Jun 03 2018
EXAMPLE
First five rows:
1;
1, 1;
3, 2, 1;
5, 6, 3, 1;
9, 13, 10, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 3 + 2x + x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209577 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209578 *)
CROSSREFS
Sequence in context: A132970 A192022 A208608 * A139377 A368607 A138483
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 11 2012
STATUS
approved