login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132970
Expansion of phi(-x) * chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.
6
1, -3, 2, -1, 5, -5, 3, -5, 6, -10, 10, -8, 13, -15, 15, -16, 23, -27, 25, -30, 35, -40, 42, -45, 55, -66, 68, -70, 86, -95, 100, -110, 125, -141, 150, -161, 185, -207, 215, -235, 266, -293, 310, -335, 375, -410, 438, -470, 521, -575, 610, -653, 725, -785, 835, -900, 983, -1070, 1140, -1220, 1331
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 60, Eqs. (26.64),(26.65),(26.66)
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-q) + 2 * psi(-q) in powers of q where phi(), psi() are Ramanujan 3rd order mock theta functions.
Expansion of q^(1/24) * eta(q)^3 / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [ -3, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (288 t)) = 48^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A085140.
G.f.: ( Sum_{k in Z} (-1)^k * x^k^2 ) / ( Product_{k>0} (1 + x^k) ).
G.f.: Product_{k>0} (1 - x^k) / (1 + x^k)^2.
a(n) = (-1)^n * A132969(n). a(n) = A124226(n) unless n=1.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(n)). - Vaclav Kotesovec, Oct 14 2017
EXAMPLE
G.f. = 1 - 3*x + 2*x^2 - x^3 + 5*x^4 - 5*x^5 + 3*x^6 - 5*x^7 + 6*x^8 + ...
G.f. = 1/q - 3*q^23 + 2*q^47 - q^71 + 5*q^95 - 5*q^119 + 3*q^143 - 5*q^167 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jul 20 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, (n+1)\2, 1 - x^(2*k-1), 1 + x * O(x^n)) * sum(k=1, sqrtint(n), 2 * (-1)^k * x^k^2, 1), n))};
(PARI) {a(n) = my(A) ; if( n<0, 0, A = x * O(x^n) ; polcoeff( eta(x + A)^3 / eta(x^2 + A)^2, n))};
CROSSREFS
Sequence in context: A091595 A246837 A132969 * A192022 A208608 A209577
KEYWORD
sign
AUTHOR
Michael Somos, Sep 04 2007
STATUS
approved