login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132972
Expansion of chi(q)^3 / chi(q^3) in powers of q where chi() is a Ramanujan theta function.
6
1, 3, 3, 3, 6, 9, 12, 15, 21, 30, 36, 45, 60, 78, 96, 117, 150, 189, 228, 276, 342, 420, 504, 603, 732, 885, 1050, 1245, 1488, 1773, 2088, 2454, 2901, 3420, 3996, 4662, 5460, 6378, 7404, 8583, 9972, 11565, 13344, 15378, 17748, 20448, 23472, 26910, 30876
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^6 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)3 * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 3, -3, 2, 0, 3, -2, 3, 0, 2, -3, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 + u*v) * (u*v - 1)^3 - (u - u^4) * (v - v^4).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (4 - 2*u + u^2) - v^3 * (1 + u + u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = (2 + u1 * u2) - u3 * u6 * (1 + u1 + u2).
G.f. is a period 1 Fourier series which satisfies f(-1/(144*t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A062244.
G.f.: Product_{k>0} (1 + x^(2*k-1))^3 / (1 + x^(6*k-3)).
a(n) = 3 * A132975(n) unless n=0.
Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*a(n) = (-2 + 2*sqrt(3))^(1/3). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - (-1)^(n+1)*x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - (-1)^n*x^(3*n + 2))) ). Cf. A273845. - Peter Bala, Dec 23 2021
EXAMPLE
G.f. = 1 + 3*q + 3*q^2 + 3*q^3 + 6*q^4 + 9*q^5 + 12*q^6 + 15*q^7 + 21*q^8 + ...
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1))^3 / (1 + x^(6*k-3)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^3 / QPochhammer[ -q^3, q^6], {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 06 2007
STATUS
approved