login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141094 Expansion of b(q) / b(q^2) in powers of q where b() is a cubic AGM theta function. 6
1, -3, 3, -3, 6, -9, 12, -15, 21, -30, 36, -45, 60, -78, 96, -117, 150, -189, 228, -276, 342, -420, 504, -603, 732, -885, 1050, -1245, 1488, -1773, 2088, -2454, 2901, -3420, 3996, -4662, 5460, -6378, 7404, -8583, 9972, -11565, 13344, -15378, 17748, -20448 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
For n >= 1, a(n)/3 is a weighted count of overpartitions with restricted odd differences. Namely, the number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) the smallest part of the overpartition is odd and overlined. - Jeremy Lovejoy, Aug 07 2015
LINKS
K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, Overpartitions with restricted odd differences, Electron. J. Combin. 22 (2015), no.3, paper 3.17.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-q)^3 / chi(-q^3) in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [ -3, 0, -2, 0, -3, 0, ...].
G.f.: Product_{k>0} (1 - x^(2*k-1))^3 / (1 - x^(6*k-3)).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - u * (2 - u*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (u^2 - 2*u + 4) - v^3 * (u^2 + u + 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * (u6^2 - u2 * u3) - u6 * (u3^2 - u6*u2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A092848.
a(n) = -3 * A124243(n) unless n=0. a(n) = (-1)^n * A132972(n).
a(2*n) = A128128(n). a(2*n + 1) = - 3* A132302(n).
Convolution inverse of A128128.
Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*(-1)^(n+1)*a(n) = (-2+2*3^(1/2))^(1/3). - Simon Plouffe, Feb 20 2011
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 - 3*q + 3*q^2 - 3*q^3 + 6*q^4 - 9*q^5 + 12*q^6 - 15*q^7 + 21*q^8 + ...
MAPLE
with(numtheory):
a:= proc(n) option remember:
`if`(n=0, 1, add(add(d*[0, -3, 0, -2, 0, -3]
[irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^3 QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d{0, -3, 0, -2, 0, -3}[[Mod[d, 6]+1]], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
a /@ Range[0, 60] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)), n))};
CROSSREFS
Sequence in context: A124449 A262877 A348224 * A132972 A113920 A081848
KEYWORD
sign
AUTHOR
Michael Somos, Jun 04 2008, Aug 12 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)