Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #49 Jan 01 2021 08:06:53
%S 1,-3,3,-3,6,-9,12,-15,21,-30,36,-45,60,-78,96,-117,150,-189,228,-276,
%T 342,-420,504,-603,732,-885,1050,-1245,1488,-1773,2088,-2454,2901,
%U -3420,3996,-4662,5460,-6378,7404,-8583,9972,-11565,13344,-15378,17748,-20448
%N Expansion of b(q) / b(q^2) in powers of q where b() is a cubic AGM theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C For n >= 1, a(n)/3 is a weighted count of overpartitions with restricted odd differences. Namely, the number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) the smallest part of the overpartition is odd and overlined. - _Jeremy Lovejoy_, Aug 07 2015
%H Alois P. Heinz, <a href="/A141094/b141094.txt">Table of n, a(n) for n = 0..10000</a>
%H K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, <a href="https://doi.org/10.37236/5248">Overpartitions with restricted odd differences</a>, Electron. J. Combin. 22 (2015), no.3, paper 3.17.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of chi(-q)^3 / chi(-q^3) in powers of q where chi() is a Ramanujan theta function.
%F Expansion of eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)) in powers of q.
%F Euler transform of period 6 sequence [ -3, 0, -2, 0, -3, 0, ...].
%F G.f.: Product_{k>0} (1 - x^(2*k-1))^3 / (1 - x^(6*k-3)).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - u * (2 - u*v).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (u^2 - 2*u + 4) - v^3 * (u^2 + u + 1).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * (u6^2 - u2 * u3) - u6 * (u3^2 - u6*u2).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A092848.
%F a(n) = -3 * A124243(n) unless n=0. a(n) = (-1)^n * A132972(n).
%F a(2*n) = A128128(n). a(2*n + 1) = - 3* A132302(n).
%F Convolution inverse of A128128.
%F Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*(-1)^(n+1)*a(n) = (-2+2*3^(1/2))^(1/3). - _Simon Plouffe_, Feb 20 2011
%F a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - _Vaclav Kotesovec_, Nov 16 2017
%e G.f. = 1 - 3*q + 3*q^2 - 3*q^3 + 6*q^4 - 9*q^5 + 12*q^6 - 15*q^7 + 21*q^8 + ...
%p with(numtheory):
%p a:= proc(n) option remember:
%p `if`(n=0, 1, add(add(d*[0, -3, 0, -2, 0, -3]
%p [irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Aug 08 2015
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^3 QPochhammer[ -x^3, x^3], {x, 0, n}]; (* _Michael Somos_, Sep 07 2015 *)
%t a[n_] := a[n] = If[n==0, 1, Sum[Sum[d{0, -3, 0, -2, 0, -3}[[Mod[d, 6]+1]], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
%t a /@ Range[0, 60] (* _Jean-François Alcover_, Jan 01 2021, after _Alois P. Heinz_ *)
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)), n))};
%Y Cf. A092848, A124243, A128128, A132302.
%K sign
%O 0,2
%A _Michael Somos_, Jun 04 2008, Aug 12 2009