login
A141092
Product of first k composite numbers divided by their sum, when the result is an integer.
14
1, 64, 46080, 111974400, 662171811840, 310393036800000, 7230916185292800, 108238138194410864640000, 23835710455777670400935290994688000000000, 1104077556971139123493322971152384000000000
OFFSET
1,2
COMMENTS
Find the products and sums of first k composites, k = 1, 2, 3, .... When the products divided by the sums produce integral quotients, add terms to sequence.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..90
FORMULA
a(n) = A036691(A196415(n)) / A053767(A196415(n)). [Reinhard Zumkeller, Oct 03 2011]
EXAMPLE
a(3)=46080 because 4*6*8*9*10*12*14=2903040 and 4+6+8+9+10+12+14=63; 2903040/63=46080, which is an integer, so 46080 is a term.
MATHEMATICA
With[{cnos=Select[Range[50], CompositeQ]}, Select[Table[Fold[ Times, 1, Take[ cnos, n]]/ Total[Take[cnos, n]], {n, Length[cnos]}], IntegerQ]] (* Harvey P. Dale, Jan 14 2015 *)
PROG
(Haskell)
import Data.Maybe (catMaybes)
a141092 n = a141092_list !! (n-1)
a141092_list = catMaybes $ zipWith div' a036691_list a053767_list where
div' x y | m == 0 = Just x'
| otherwise = Nothing where (x', m) = divMod x y
-- Reinhard Zumkeller, Oct 03 2011
(PARI) s=0; p=1; forcomposite(n=4, 100, p*=n; s+=n; if(p%s==0, print1(p/s", "))) \\ Charles R Greathouse IV, Apr 04 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Jun 01 2008
EXTENSIONS
Checked by N. J. A. Sloane, Oct 02 2011.
STATUS
approved