OFFSET
1,2
COMMENTS
Find the products and sums of first k composites, k = 1, 2, 3, .... When the products divided by the sums produce integral quotients, add terms to sequence.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..90
FORMULA
EXAMPLE
a(3)=46080 because 4*6*8*9*10*12*14=2903040 and 4+6+8+9+10+12+14=63; 2903040/63=46080, which is an integer, so 46080 is a term.
MATHEMATICA
With[{cnos=Select[Range[50], CompositeQ]}, Select[Table[Fold[ Times, 1, Take[ cnos, n]]/ Total[Take[cnos, n]], {n, Length[cnos]}], IntegerQ]] (* Harvey P. Dale, Jan 14 2015 *)
PROG
(Haskell)
import Data.Maybe (catMaybes)
a141092 n = a141092_list !! (n-1)
a141092_list = catMaybes $ zipWith div' a036691_list a053767_list where
div' x y | m == 0 = Just x'
| otherwise = Nothing where (x', m) = divMod x y
-- Reinhard Zumkeller, Oct 03 2011
(PARI) s=0; p=1; forcomposite(n=4, 100, p*=n; s+=n; if(p%s==0, print1(p/s", "))) \\ Charles R Greathouse IV, Apr 04 2013
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Jun 01 2008
EXTENSIONS
Checked by N. J. A. Sloane, Oct 02 2011.
STATUS
approved