login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196415
Values of n such that (product of first n composite numbers) / (sum of first n composite numbers) is an integer.
7
1, 4, 7, 10, 13, 15, 16, 21, 32, 33, 56, 57, 60, 70, 77, 80, 83, 84, 88, 92, 93, 97, 112, 114, 115, 120, 122, 130, 134, 141, 147, 153, 155, 164, 165, 188, 191, 196, 201, 202, 213, 222, 225, 226, 229, 243, 245, 248, 252, 260, 264, 265, 268, 273, 274, 281
OFFSET
1,2
COMMENTS
A036691(a(n)) mod A053767(a(n)) = 0, A141092(n) = A036691(a(n)) / A053767(a(n)). [Reinhard Zumkeller, Oct 03 2011]
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
MAPLE
# First define list of composite numbers:
tc:=[4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27,
28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49,
50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69,
70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88];
a1:=n->mul(tc[i], i=1..n);
a2:=n->add(tc[i], i=1..n);
sn:=[];
s0:=[];
s1:=[];
s2:=[];
for n from 1 to 40 do
t1:=a1(n)/a2(n);
if whattype(t1) = integer then
sn:= [op(sn), n];
s0:= [op(s0), t1];
s1:= [op(s1), a1(n)];
s2:= [op(s2), a2(n)];
fi;
od:
sn; s0; s1; s2;
# alternatively
for n from 1 to 1000 do
if type(A036691(n)/A053767(n), 'integer') then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Oct 03 2011
MATHEMATICA
c = Select[Range[2, 355], ! PrimeQ@# &]; p = 1; s = 0; Select[Range@ Length@c, Mod[p *= c[[#]], s += c[[#]]] == 0 &] (* Giovanni Resta, Apr 03 2013 *)
PROG
(Haskell)
import Data.List (elemIndices)
a196415 n = a196415_list !! (n-1)
a196415_list =
map (+ 1) $ elemIndices 0 $ zipWith mod a036691_list a053767_list
-- Reinhard Zumkeller, Oct 03 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 02 2011
EXTENSIONS
More terms from Arkadiusz Wesolowski, Oct 03 2011
STATUS
approved