The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196415 Values of n such that (product of first n composite numbers) / (sum of first n composite numbers) is an integer. 7
 1, 4, 7, 10, 13, 15, 16, 21, 32, 33, 56, 57, 60, 70, 77, 80, 83, 84, 88, 92, 93, 97, 112, 114, 115, 120, 122, 130, 134, 141, 147, 153, 155, 164, 165, 188, 191, 196, 201, 202, 213, 222, 225, 226, 229, 243, 245, 248, 252, 260, 264, 265, 268, 273, 274, 281 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A036691(a(n)) mod A053767(a(n)) = 0, A141092(n) = A036691(a(n)) / A053767(a(n)). [Reinhard Zumkeller, Oct 03 2011] LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 MAPLE # First define list of composite numbers: tc:=[4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88]; a1:=n->mul(tc[i], i=1..n); a2:=n->add(tc[i], i=1..n); sn:=[]; s0:=[]; s1:=[]; s2:=[]; for n from 1 to 40 do t1:=a1(n)/a2(n); if whattype(t1) = integer then sn:= [op(sn), n]; s0:= [op(s0), t1]; s1:= [op(s1), a1(n)]; s2:= [op(s2), a2(n)]; fi; od: sn; s0; s1; s2; # alternatively for n from 1 to 1000 do if type(A036691(n)/A053767(n), 'integer') then printf("%d, ", n); end if; end do: # R. J. Mathar, Oct 03 2011 MATHEMATICA c = Select[Range[2, 355], ! PrimeQ@# &]; p = 1; s = 0; Select[Range@ Length@c, Mod[p *= c[[#]], s += c[[#]]] == 0 &] (* Giovanni Resta, Apr 03 2013 *) PROG (Haskell) import Data.List (elemIndices) a196415 n = a196415_list !! (n-1) a196415_list = map (+ 1) \$ elemIndices 0 \$ zipWith mod a036691_list a053767_list -- Reinhard Zumkeller, Oct 03 2011 CROSSREFS Cf. A051838, A141090, A141091, A141092. Sequence in context: A327422 A260165 A055054 * A186327 A190362 A184904 Adjacent sequences: A196412 A196413 A196414 * A196416 A196417 A196418 KEYWORD nonn AUTHOR N. J. A. Sloane, Oct 02 2011 EXTENSIONS More terms from Arkadiusz Wesolowski, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 03:03 EST 2024. Contains 370266 sequences. (Running on oeis4.)