login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190362
a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sqrt(5/4), t=sqrt(4/5).
3
1, 4, 7, 10, 13, 15, 18, 21, 24, 26, 28, 31, 34, 37, 40, 42, 45, 48, 50, 53, 55, 58, 61, 64, 67, 69, 72, 75, 77, 80, 82, 85, 88, 91, 94, 96, 99, 101, 104, 107, 109, 112, 115, 118, 121, 123, 126, 128, 131, 134, 136, 139, 142, 145, 148, 150, 152, 155, 158, 161, 163, 166, 169, 172, 175, 177, 179, 182, 185, 188, 190, 193, 196, 199, 202
OFFSET
1,2
COMMENTS
See A190361.
LINKS
FORMULA
A190361: f(n) = n + [n*sqrt(5/4)] + [n*sqrt(4/5)].
A190362: g(n) = n + [n*sqrt(4/5)] + [4*n/5].
A190363: h(n) = 2*n + [n*sqrt(5/4)] + [n/4].
MATHEMATICA
r=1; s=(5/4)^(1/2); t=1/s;
f[n_] := n + Floor[n*s/r] + Floor[n*t/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[f[n], {n, 1, 120}] (* A190361 *)
Table[g[n], {n, 1, 120}] (* A190362 *)
Table[h[n], {n, 1, 120}] (* A190363 *)
PROG
(PARI) for(n=1, 100, print1(n + floor(n*sqrt(4/5)) + floor(4*n/5), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) [n + Floor(n*Sqrt(4/5)) + Floor(4*n/5): n in [1..100]]; // G. C. Greubel, Apr 05 2018
CROSSREFS
Cf. A190361.
Sequence in context: A055054 A196415 A186327 * A184904 A189514 A310677
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 09 2011
STATUS
approved