OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (9*sqrt(2)*n^(5/4)). - Vaclav Kotesovec, Nov 10 2016
G.f.: (x^3; x^3)_inf/((x; x)_inf)^3, where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A078708(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
It appears that the g.f. A(x) = F(x)^3, where F(x) = exp( Sum_{n >= 0} x^(3*n+1)/((3*n + 1)*(1 - x^(3*n+1))) + x^(3*n+2)/((3*n + 2)*(1 - x^(3*n + 2))) ). Cf. A132972. - Peter Bala, Dec 23 2021
EXAMPLE
G.f.: 1 + 3*x + 9*x^2 + 21*x^3 + 48*x^4 + 99*x^5 + 198*x^6 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
(QPochhammer[x^3, x^3]/QPochhammer[x, x]^3 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
PROG
(PARI) first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(3*k))/(1-x^k)^3, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q)^3)} \\ Altug Alkan, Mar 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2016
STATUS
approved