OFFSET
0,2
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
FORMULA
G.f.: Product_{n>=1} (1 - x^(4*n))/(1 - x^n)^4.
a(n) ~ 5*exp(Pi*sqrt(5*n/2)) / (2^(13/2) * n^(3/2)). - Vaclav Kotesovec, Nov 10 2016
G.f.: (x^4; x^4)_inf/((x; x)_inf)^4, where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A285895(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
EXAMPLE
G.f.: 1 + 4*x + 14*x^2 + 40*x^3 + 104*x^4 + 248*x^5 + 560*x^6 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(4*k))/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
(QPochhammer[x^4, x^4]/QPochhammer[x, x]^4 + O[x]^40)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
PROG
(PARI) first(n)=my(x='x); Vec(prod(k=1, n, (1-x^(4*k))/(1-x^k)^4, 1+O(x^(n+1)))) \\ Charles R Greathouse IV, Nov 07 2016
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Seiichi Manyama, Nov 07 2016
STATUS
approved