OFFSET
0,3
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
Coefficient of x^(n^3) in 1/((1-x)*(1-x^2)).
a(n) = A008619(n^3).
a(n) = (3+(-1)^n+2*n^3)/4.
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.
G.f.: (1-2*x+4*x^2+3*x^3) / ((1-x)^4*(1+x)).
From Stefano Spezia, Sep 28 2022: (Start)
a(n) = A050492((n+1)/2) for n odd.
E.g.f.: ((2 + x + 3*x^2 + x^3)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. (End)
MAPLE
MATHEMATICA
Table[(3+(-1)^n+2*n^3)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 25 2016 *)
PROG
(PARI)
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)).
b(n) = (3+(-1)^n+2*n)/4
vector(50, n, n--; b(n^3))
(Magma) [(3+(-1)^n+2*n^3)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jun 25 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 18 2016
STATUS
approved