login
A274324
Number of partitions of n^3 into at most two parts.
3
1, 1, 5, 14, 33, 63, 109, 172, 257, 365, 501, 666, 865, 1099, 1373, 1688, 2049, 2457, 2917, 3430, 4001, 4631, 5325, 6084, 6913, 7813, 8789, 9842, 10977, 12195, 13501, 14896, 16385, 17969, 19653, 21438, 23329, 25327, 27437, 29660, 32001, 34461, 37045, 39754
OFFSET
0,3
FORMULA
Coefficient of x^(n^3) in 1/((1-x)*(1-x^2)).
a(n) = A008619(n^3).
a(n) = (3+(-1)^n+2*n^3)/4.
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.
G.f.: (1-2*x+4*x^2+3*x^3) / ((1-x)^4*(1+x)).
From Stefano Spezia, Sep 28 2022: (Start)
a(n) = A050492((n+1)/2) for n odd.
E.g.f.: ((2 + x + 3*x^2 + x^3)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. (End)
MAPLE
A274324:=n->(3+(-1)^n+2*n^3)/4: seq(A274324(n), n=0..50); # Wesley Ivan Hurt, Jun 25 2016
MATHEMATICA
Table[(3+(-1)^n+2*n^3)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 25 2016 *)
PROG
(PARI)
\\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)).
b(n) = (3+(-1)^n+2*n)/4
vector(50, n, n--; b(n^3))
(Magma) [(3+(-1)^n+2*n^3)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jun 25 2016
CROSSREFS
A subsequence of A008619.
Cf. A099392 (n^2), A274325 (n^5).
Cf. also A050492.
Sequence in context: A053209 A306192 A271993 * A014302 A038090 A094002
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 18 2016
STATUS
approved