OFFSET
0,3
COMMENTS
Coefficient of x^(n^4) in 1/((1-x)*(1-x^2)).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
FORMULA
G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.
a(n) = (3 + (-1)^n + 2*n^4)/4.
a(n) = A008619(n^4).
a(n) = 1 + floor(n^4/2). - Alois P. Heinz, Oct 13 2016
E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Mar 17 2024
PROG
(PARI) a(n) = (3+(-1)^n+2*n^4)/4
(PARI)
b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2))
vector(50, n, n--; b(n^4))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Oct 13 2016
STATUS
approved