login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A274323
Number of partitions of n^4 into at most two parts.
1
1, 1, 9, 41, 129, 313, 649, 1201, 2049, 3281, 5001, 7321, 10369, 14281, 19209, 25313, 32769, 41761, 52489, 65161, 80001, 97241, 117129, 139921, 165889, 195313, 228489, 265721, 307329, 353641, 405001, 461761, 524289, 592961, 668169, 750313, 839809, 937081
OFFSET
0,3
COMMENTS
Coefficient of x^(n^4) in 1/((1-x)*(1-x^2)).
FORMULA
G.f.: (1 - 3*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) / ((1-x)^5*(1+x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n > 5.
a(n) = (3 + (-1)^n + 2*n^4)/4.
a(n) = A008619(n^4).
a(n) = 1 + floor(n^4/2). - Alois P. Heinz, Oct 13 2016
E.g.f.: ((2 + x + 7*x^2 + 6*x^3 + x^4)*cosh(x) + (1 + x + 7*x^2 + 6*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Mar 17 2024
PROG
(PARI) a(n) = (3+(-1)^n+2*n^4)/4
(PARI)
b(n) = (3+(-1)^n+2*n)/4 \\ the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2))
vector(50, n, n--; b(n^4))
CROSSREFS
Cf. A099392 (n^2), A274324 (n^3), A274325 (n^5).
Cf. A008619.
Sequence in context: A245932 A373517 A362293 * A297740 A297741 A001846
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Oct 13 2016
STATUS
approved