The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001846 Centered 4-dimensional orthoplex numbers (crystal ball sequence for 4-dimensional cubic lattice). (Formerly M4622 N1974) 12
 1, 9, 41, 129, 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041, 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401, 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241, 1061761, 1186369 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of points in the Z^4 lattice that are at distance at most n from the origin in the adjacency graph. - N. J. A. Sloane, Feb 19 2013 Number of nodes of degree 8 in virtual, optimal, chordal graphs of diameter d(G)=n. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002 If Y_i (i=1,2,3,4) are 2-blocks of an (n+4)-set X then a(n-4) is the number of 8-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Oct 28 2007 Equals binomial transform of [1, 8, 24, 32, 16, 0, 0, 0, ...] where (1, 8, 24, 32, 16) = row 4 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008 Comment from Ben Thurston, Feb 18 2013: In the plane, if you make a picture by taking one unit step in each of the basic 8 directions from a central dot, then from each of those going one unit step in each of the eight directions, ... (see illustration), it appears that the number of dots in the picture after n steps is equal to a(n). Response from N. J. A. Sloane, Feb 19 2013: This is correct, and follows from the fact that the Z-module Z[1,i,(+-1+i)/sqrt(2)] is essentially a copy of the Z^4 lattice. a(n) = D(4,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (4,n) using steps that move one unit north, east, or northeast. - Jack W Grahl, Feb 15 2021 The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^4 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 4 from any given point. - Shel Kaphan, Jan 02 2023 REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf). Milan Janjic, Two Enumerative Functions G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy) Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279. Ben Thurston, Illustration of the first four clusters of points in two dimensions Index entries for crystal ball sequences Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1). FORMULA G.f.: (1+x)^4 /(1-x)^5. a(n) = (2*n^4 + 4*n^3 + 10*n^2 + 8*n + 3)/3. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002 From Jonathan Vos Post, Mar 15 2006: (Start) a(n) = Sum_{i=0..n} A008412(i); a(n) = Sum_{i=0..n} 8*i*(i^2 + 2)/3; a(n) = Sum_{i=0..n} 8*i*(A059100(i))/3. (End) a(n) = Sum_{k=0..min(4,n)} 2^k * binomial(4,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014 EXAMPLE a(6)=1289: (2*6^4 + 4*6^3 + 10*6^2 + 8*6 + 3) / 3 = (2592 + 864 + 360 + 48 + 3) / 3 = 3867 / 3 = 1289. MAPLE for n from 1 to k do eval((2*n^4+4*n^3+10*n^2+8*n+3)/3) od; A001846:=-(z+1)**4/(z-1)**5; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation MATHEMATICA CoefficientList[Series[(-z^4-4 z^3-6 z^2-4 z-1)/(z-1)^5, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *) CROSSREFS Cf. A005408, A001844, A001845, A001847, A059100, A013609. First differences are A008412. Cf. A240876. Row/column 4 of A008288. Sequence in context: A274323 A297740 A297741 * A271663 A034441 A201275 Adjacent sequences: A001843 A001844 A001845 * A001847 A001848 A001849 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 16:26 EDT 2023. Contains 365648 sequences. (Running on oeis4.)