|
|
A001848
|
|
Crystal ball sequence for 6-dimensional cubic lattice.
(Formerly M4904 N2102)
|
|
7
|
|
|
1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, 88043969
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Number of nodes of degree 12 in virtual, optimal chordal graphs of diameter d(G)=n - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
Equals binomial transform of [1, 12, 60, 160, 240, 192, 64, 0, 0, 0, ...] where (1, 12, 60, 160, 240, 192, 64) = row 6 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
|
|
REFERENCES
|
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..1000
D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
Index entries for crystal ball sequences
|
|
FORMULA
|
G.f.: (1+x)^6 /(1-x)^7.
a(n) = (4/45)*n^6 + (4/15)*n^5 + (14/9)*n^4 + (8/3)*n^3 + (196/45)*n^2 + (46/15)*n + 1. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
a(n) = Sum_{k=0..min(6,n)} 2^k * binomial(6,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
|
|
MAPLE
|
for n from 1 to k do eval(4/45*n^6+4/15*n^5+14/9*n^4+8/3*n^3+196/45*n^2+46/15*n+1); od;
A001848:=-(z+1)**6/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
|
|
MATHEMATICA
|
CoefficientList[Series[-(z + 1)^6/(z - 1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
|
|
CROSSREFS
|
Cf. A001847, A013609.
Cf. A240876.
Sequence in context: A297207 A222491 A010025 * A055843 A296647 A233325
Adjacent sequences: A001845 A001846 A001847 * A001849 A001850 A001851
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|