login
A306192
a(n) = (n - 1)*prime(n + 1).
4
0, 5, 14, 33, 52, 85, 114, 161, 232, 279, 370, 451, 516, 611, 742, 885, 976, 1139, 1278, 1387, 1580, 1743, 1958, 2231, 2424, 2575, 2782, 2943, 3164, 3683, 3930, 4247, 4448, 4917, 5134, 5495, 5868, 6179, 6574, 6981, 7240, 7831, 8106, 8471, 8756, 9495, 10258
OFFSET
1,2
COMMENTS
For n > 1, a(n) is the subdiagonal sum of the matrix M(n) whose determinant is A318173(n).
LINKS
FORMULA
a(n) = A033286(n + 1) - 2*A000040(n + 1).
a(n) = (n - 1)/(n + 1)*A033286(n + 1).
MAPLE
a := n -> (n-1)*ithprime(n+1): seq(a(n), n = 1 .. 100);
MATHEMATICA
a[n_]:=(n-1)*Prime[n+1]; Array[a, 100]
PROG
(Magma) [(n-1)*NthPrime(n+1): n in [1..100]];
(PARI) a(n) = (n-1)*prime(n+1);
(Python)
from sympy import prime
[(n-1)*prime(n+1) for n in range(1, 100)]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Jan 28 2019
STATUS
approved