login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033286
a(n) = n * prime(n).
49
2, 6, 15, 28, 55, 78, 119, 152, 207, 290, 341, 444, 533, 602, 705, 848, 1003, 1098, 1273, 1420, 1533, 1738, 1909, 2136, 2425, 2626, 2781, 2996, 3161, 3390, 3937, 4192, 4521, 4726, 5215, 5436, 5809, 6194, 6513, 6920, 7339, 7602, 8213, 8492, 8865, 9154, 9917
OFFSET
1,1
COMMENTS
Does an n exist such that n*prime(n)/(n+prime(n)) is an integer? - Ctibor O. Zizka, Mar 04 2008. The answer to Zizka's question is easily seen to be No: such an integer k would be positive and less than prime(n), but then k*(n + prime(n)) = prime(n)*n would be impossible. - Robert Israel, Apr 20 2015
Sums of rows of the triangle in A005145. - Reinhard Zumkeller, Aug 05 2009
Complement of A171520(n). - Jaroslav Krizek, Dec 13 2009
Partial sums of A090942. - Omar E. Pol, Apr 20 2015
LINKS
Albert Frank, International Contest Of Logical Sequences, 2002 - 2003. Item 1.
FORMULA
a(n) = n * A000040(n) = n * A008578(n+1) = n * A158611(n+2). - Jaroslav Krizek, Aug 31 2009
a(n) = A007504(n) + A152535(n). - Omar E. Pol, Aug 09 2012
Sum_{n>=1} 1/a(n) = A124012. - Amiram Eldar, Oct 15 2020
MAPLE
A033286 := proc(n) n*ithprime(n) ; end proc:
seq(A033286(n), n=1..20) ; # R. J. Mathar, Mar 21 2011
MATHEMATICA
Table[Prime[n]*n, {n, 38}] (* Alonso del Arte *)
PROG
(MuPAD) ithprime(i)*i $ i = 1..47 // Zerinvary Lajos, Feb 26 2007
(Magma) [ n*NthPrime(n): n in [1..47] ]; // Klaus Brockhaus, Sep 09 2009
(PARI) a(n)=n*prime(n) \\ Charles R Greathouse IV, Jul 01 2013
(Haskell)
a033286 n = a000040 n * n -- Reinhard Zumkeller, Jul 24 2013
CROSSREFS
Cf. A005145 (primes repeated), A171520 (complement), A076146 (iterated).
Sequence in context: A138621 A163061 A331773 * A182724 A374218 A342163
KEYWORD
nonn,easy
EXTENSIONS
Correction for change of offset in A158611 and A008578 in Aug 2009 from Jaroslav Krizek, Jan 27 2010
STATUS
approved