login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152535
a(n) = n*prime(n) - Sum_{i=1..n} prime(i).
12
0, 1, 5, 11, 27, 37, 61, 75, 107, 161, 181, 247, 295, 321, 377, 467, 563, 597, 705, 781, 821, 947, 1035, 1173, 1365, 1465, 1517, 1625, 1681, 1797, 2217, 2341, 2533, 2599, 2939, 3009, 3225, 3447, 3599, 3833, 4073, 4155, 4575, 4661
OFFSET
1,3
COMMENTS
a(n) is also the area under the curve of the function pi(x) from 0 to prime(n). - Omar E. Pol, Nov 13 2013
LINKS
Christian Axler, On a sequence involving the prime numbers, arXiv:1504.04467 [math.NT], 2015 and J. Int. Seq. 18 (2015) # 15.7.6.
Christian Axler, Improving the Estimates for a Sequence Involving Prime Numbers, arXiv:1706.04049 [math.NT], 2017.
FORMULA
a(n) = A033286(n) - A007504(n). - Omar E. Pol, Aug 09 2012
a(n) = A046992(A006093(n)). - Omar E. Pol, Apr 21 2015
a(n+1) = Sum_{k=A000124(n-1)..A000217(n)} A204890(k). - Benedict W. J. Irwin, May 23 2016
a(n) = Sum_{k=1..n-1} k*A001223(k). - François Huppé, Mar 16 2022
EXAMPLE
From Omar E. Pol, Apr 27 2015: (Start)
For n = 5 the 5th prime is 11 and the sum of first five primes is 2 + 3 + 5 + 7 + 11 = 28, so a(5) = 5*11 - 28 = 27.
Illustration of a(5) = 27:
Consider a diagram in the first quadrant of the square grid in which the number of cells in the n-th horizontal bar is equal to the n-th prime, as shown below:
. _ _ _ _ _ _ _ _ _ _ _
. 11 |_ _ _ _ _ _ _ _ _ _ _|
. 7 |_ _ _ _ _ _ _|* * * *
. 5 |_ _ _ _ _|* * * * * *
. 3 |_ _ _|* * * * * * * *
. 2 |_ _|* * * * * * * * *
.
a(5) is also the area (or the number of cells, or the number of *'s) under the bar's structure of prime numbers: a(5) = 1 + 4 + 6 + 16 = 27.
(End)
MATHEMATICA
nn = 100; p = Prime[Range[nn]]; Range[nn] p - Accumulate[p] (* T. D. Noe, May 02 2011 *)
PROG
(Sage) [n*nth_prime(n) - sum(nth_prime(j) for j in range(1, n+1)) for n in range(1, 45)] # Danny Rorabaugh, Apr 18 2015
(PARI) vector(80, n, n*prime(n) - sum(k=1, n, prime(k))) \\ Michel Marcus, Apr 20 2015
(Python)
from sympy import prime, primerange
def A152535(n): return (n-1)*(p:=prime(n))-sum(primerange(p)) # Chai Wah Wu, Jan 01 2024
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Dec 06 2008
STATUS
approved