login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287350 Number of independent vertex sets and vertex covers in the n-gear graph. 1
5, 11, 26, 63, 155, 386, 971, 2463, 6290, 16151, 41651, 107778, 279635, 727031, 1893266, 4936383, 12883115, 33647426, 87928091, 229874703, 601171730, 1572591911, 4114506851, 10766734338, 28177307555, 73748411111, 193034371346, 505287594063, 1322694193115 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Extended to a(1)-a(2) using the formula/recurrence.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Eric Weisstein's World of Mathematics, Gear Graph

Eric Weisstein's World of Mathematics, Independent Vertex Set

Eric Weisstein's World of Mathematics, Vertex Cover

Index entries for linear recurrences with constant coefficients, signature (5,-7,2).

FORMULA

a(n) = 2^n + Lucas(2*n).

G.f.: x*(5 - 14*x + 6*x^2)/((1 - 2*x)*(1 - 3*x + x^2)). - Ilya Gutkovskiy, May 23 2017

From Colin Barker, Jun 05 2017: (Start)

a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3) for n>3.

a(n) = 2^(-n)*(4^n + (3-sqrt(5))^n + (3+sqrt(5))^n).

(End)

MATHEMATICA

Table[2^n + LucasL[2 n], {n, 20}]

LinearRecurrence[{5, -7, 2}, {5, 11, 26}, 20]

CoefficientList[Series[(-5 + 14 x - 6 x^2)/(-1 + 5 x - 7 x^2 + 2 x^3), {x, 0, 20}], x]

PROG

(Python)

from sympy import lucas

def a(n): return 2**n + lucas(2*n) # Indranil Ghosh, May 24 2017

(PARI) Vec(x*(5 - 14*x + 6*x^2)/((1 - 2*x)*(1 - 3*x + x^2)) + O(x^30)) \\ Colin Barker, Jun 05 2017

CROSSREFS

Cf. A000032, A000079, A005248.

Sequence in context: A326161 A038253 A274681 * A294091 A032379 A152535

Adjacent sequences:  A287347 A287348 A287349 * A287351 A287352 A287353

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, May 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 01:24 EST 2021. Contains 349396 sequences. (Running on oeis4.)