login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287349
Number of matchings in the n-gear graph.
2
4, 13, 42, 131, 398, 1186, 3482, 10103, 29034, 82777, 234424, 660098, 1849552, 5160001, 14341098, 39723791, 109701122, 302131618, 830079014, 2275509227, 6225274794, 16999389733, 46341292012, 126130604546, 342800478748, 930414584821, 2522124577962, 6828859302683
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Gear Graph
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Matching
FORMULA
a(n) = Lucas(2*n) + n*Fibonacci(2*n) for n > 0.
G.f.: x*(4 - 11*x + 8*x^2 - 2*x^3)/(1 - 3*x + x^2)^2. - Ilya Gutkovskiy, May 23 2017
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4) for n>4. - Colin Barker, Jun 05 2017
MATHEMATICA
Table[LucasL[2 n] + n Fibonacci[2 n], {n, 20}]
LinearRecurrence[{6, -11, 6, -1}, {4, 13, 42, 131}, 30]
CoefficientList[Series[(42 - 121 x + 74 x^2 - 13 x^3)/(1 - 3 x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Oct 02 2017 *)
PROG
(Python)
from sympy import lucas, fibonacci
def a(n): return lucas(2*n) + n*fibonacci(2*n) # Indranil Ghosh, May 24 2017
(PARI) Vec(x*(4 - 11*x + 8*x^2 - 2*x^3)/(1 - 3*x + x^2)^2 + O(x^30)) \\ Colin Barker, Jun 05 2017
(PARI) a(n) = fibonacci(2*n-1) + n*fibonacci(2*n) + fibonacci(2*n+1); \\ Altug Alkan, Oct 02 2017
CROSSREFS
Sequence in context: A109454 A357063 A307261 * A000640 A199842 A192910
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, May 23 2017
STATUS
approved