The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287349 Number of matchings in the n-gear graph. 2
 4, 13, 42, 131, 398, 1186, 3482, 10103, 29034, 82777, 234424, 660098, 1849552, 5160001, 14341098, 39723791, 109701122, 302131618, 830079014, 2275509227, 6225274794, 16999389733, 46341292012, 126130604546, 342800478748, 930414584821, 2522124577962, 6828859302683 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Gear Graph Eric Weisstein's World of Mathematics, Independent Edge Set Eric Weisstein's World of Mathematics, Matching Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1). FORMULA a(n) = Lucas(2*n) + n*Fibonacci(2*n) for n > 0. G.f.: x*(4 - 11*x + 8*x^2 - 2*x^3)/(1 - 3*x + x^2)^2. - Ilya Gutkovskiy, May 23 2017 a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4) for n>4. - Colin Barker, Jun 05 2017 MATHEMATICA Table[LucasL[2 n] + n Fibonacci[2 n], {n, 20}] LinearRecurrence[{6, -11, 6, -1}, {4, 13, 42, 131}, 30] CoefficientList[Series[(42 - 121 x + 74 x^2 - 13 x^3)/(1 - 3 x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Oct 02 2017 *) PROG (Python) from sympy import lucas, fibonacci def a(n): return lucas(2*n) + n*fibonacci(2*n) # Indranil Ghosh, May 24 2017 (PARI) Vec(x*(4 - 11*x + 8*x^2 - 2*x^3)/(1 - 3*x + x^2)^2 + O(x^30)) \\ Colin Barker, Jun 05 2017 (PARI) a(n) = fibonacci(2*n-1) + n*fibonacci(2*n) + fibonacci(2*n+1); \\ Altug Alkan, Oct 02 2017 CROSSREFS Cf. A000032, A000045. Sequence in context: A255836 A109454 A307261 * A000640 A199842 A192910 Adjacent sequences:  A287346 A287347 A287348 * A287350 A287351 A287352 KEYWORD nonn,easy AUTHOR Eric W. Weisstein, May 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 11:00 EDT 2022. Contains 354033 sequences. (Running on oeis4.)