login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109454
Sum of non-Fibonacci numbers between successive Fibonacci numbers: a(n) = Sum_{k=F(n)+1..F(n+1)-1} k.
1
0, 0, 0, 0, 4, 13, 42, 119, 330, 890, 2376, 6291, 16588, 43615, 114492, 300236, 786828, 2061233, 5398470, 14136759, 37015990, 96917974, 253748880, 664346375, 1739318904, 4553656703, 11921726232, 31211643384, 81713400340, 213928875445, 560073740226
OFFSET
0,5
FORMULA
a(n) = Fibonacci(n+2)*(Fibonacci(n-1)-1)/2, n>1. - Vladeta Jovovic, Aug 27 2005
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. - Colin Barker, Mar 26 2015
G.f.: x^4*(x^2-x-4) / ((x+1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, Mar 26 2015
EXAMPLE
F(5) = F(4) + 1 = 4.
F(6) = (F(5) + 1) + (F(5) + 2) = 6+7 = 13.
F(7) = 9+10+11+12 = 42.
MATHEMATICA
CoefficientList[Series[x^4*(x^2 - x - 4)/((x + 1) (x^2 - 3 x + 1) (x^2 + x - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Jul 08 2021 *)
Total[Range[#[[1]]+1, #[[2]]-1]]&/@Partition[Fibonacci[Range[0, 40]], 2, 1] (* or *) LinearRecurrence[{3, 1, -5, -1, 1}, {0, 0, 0, 0, 4, 13, 42}, 40] (* Harvey P. Dale, Sep 30 2024 *)
PROG
(PARI) concat([0, 0, 0, 0], Vec(x^4*(x^2-x-4) / ((x+1)*(x^2-3*x+1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 26 2015
CROSSREFS
Sequence in context: A036366 A303863 A255836 * A357063 A307261 A287349
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Aug 27 2005
EXTENSIONS
More terms from Franklin T. Adams-Watters, Jun 06 2006
STATUS
approved