login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230850
A054541 and A000012 interleaved.
4
2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 4, 1, 6, 1, 6, 1, 2, 1, 6, 1, 4, 1, 2, 1, 6, 1, 4, 1, 6, 1, 8, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 14, 1, 4, 1, 6, 1, 2, 1, 10, 1, 2, 1, 6, 1, 6, 1, 4, 1, 6, 1, 6, 1, 2, 1, 10, 1, 2, 1
OFFSET
1,1
COMMENTS
a(n) is also the length of the n-th edge of a staircase which represents the function pi(x) on the first quadrant of the square grid, see A000720.
a(2n-1) is the length of the n-th horizontal edge in the staircase.
a(2n) is the length of the n-th vertical edge in the staircase.
For another version see A230849.
LINKS
FORMULA
a(1) = 2; for n > 1, a(n) = A230849(n). - Antti Karttunen, Dec 23 2018
EXAMPLE
Illustration of initial terms, n = 1..22:
.
1 _ _|
1 _ _ _ _ _ _|
1 _ _ _ _|
1 _ _|
1 _ _ _ _|
1 _ _|
1 _ _ _ _|
1 _ _|
1 _ _|
1 _|
1 _ _|
.
. 2 1 2 2 4 2 4 2 4 6 2
.
Drawing vertical line segments below the staircase (as shown below) we have that the number of cells in the vertical bars gives 0 together A000720.
Drawing horizontal line segments above the staircase we have that the number of cells in the k-th horizontal bar is A000040(k).
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
31 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
29 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
23 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | |
19 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | |
17 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | |
13 |_ _ _ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | |
11 |_ _ _ _ _ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | |
7 |_ _ _ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | |
5 |_ _ _ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | |
3 |_ _ _| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
2 |_ _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
. 0 0 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 9 10 10
.
MATHEMATICA
Riffle[Join[{2}, Differences[Prime[Range[100]]]], 1] (* Paolo Xausa, Oct 31 2023 *)
PROG
(PARI) A230850(n) = if(1==n, 2, if((n%2), prime((n+1)/2)-prime(((n+1)/2)-1), 1)); \\ Antti Karttunen, Dec 23 2018
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 31 2013
STATUS
approved