|
|
A319608
|
|
Irregular triangle read by rows: T(n,k) is the number of irreducible numerical semigroups with Frobenius number n and k minimal generators less than n/2.
|
|
0
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 1, 5, 2, 1, 4, 1, 1, 4, 2, 1, 4, 2, 1, 7, 6, 1, 1, 4, 2, 1, 8, 9, 2, 1, 5, 4, 1, 1, 7, 8, 2, 1, 8, 9, 2, 1, 10, 17, 7, 1, 1, 5, 6, 2, 1, 10, 19, 12, 2, 1, 10, 16, 7, 1, 1, 10, 21, 11, 2, 1, 9, 16, 9, 2, 1, 13, 34, 26, 8, 1, 1, 8, 15, 10, 2, 1, 14, 41, 37, 14, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
The length of each row is floor((n+1)/2) - floor(n/3).
The expected number of minimal generators of a randomly selected numerical semigroup S(M,p) equals Sum_{n=1..M} ( p * (1 - p)^(floor(n/2)) * Product_{k>=0} T(n,k)*p^k ).
|
|
LINKS
|
|
|
EXAMPLE
|
T(13,2) = 2, since {5,6,9} and {7,8,9,10,11,12} minimally generate irreducible numerical semigroups with Frobenius number 13.
When written in rows:
1
1
1
1
1, 1
1
1, 2
1, 1
1, 2
1, 2
1, 4, 1
1, 1
1, 5, 2
1, 4, 1
1, 4, 2
1, 4, 2
1, 7, 6, 1
1, 4, 2
1, 8, 9, 2
1, 5, 4, 1
1, 7, 8, 2
1, 8, 9, 2
1, 10, 17, 7, 1
1, 5, 6, 2
1, 10, 19, 12, 2
1, 10, 16, 7, 1
1, 10, 21, 11, 2
1, 9, 16, 9, 2
1, 13, 34, 26, 8, 1
1, 8, 15, 10, 2
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|