OFFSET
1,9
COMMENTS
The length of each row is floor((n+1)/2) - floor(n/3).
Summing rows yields A158206.
The expected number of minimal generators of a randomly selected numerical semigroup S(M,p) equals Sum_{n=1..M} ( p * (1 - p)^(floor(n/2)) * Product_{k>=0} T(n,k)*p^k ).
LINKS
J. De Loera, C. O'Neill, and D. Wilbourne, Random numerical semigroups and a simplicial complex of irreducible semigroups, arXiv:1710.00979 [math.AC], 2017.
C. Leng and C. O'Neill, A sequence of quasipolynomials arising from random numerical semigroups, arXiv:1809.09915 [math.CO], 2018.
C. O'Neill, The first 90 rows formatted as a triangle
EXAMPLE
T(13,2) = 2, since {5,6,9} and {7,8,9,10,11,12} minimally generate irreducible numerical semigroups with Frobenius number 13.
When written in rows:
1
1
1
1
1, 1
1
1, 2
1, 1
1, 2
1, 2
1, 4, 1
1, 1
1, 5, 2
1, 4, 1
1, 4, 2
1, 4, 2
1, 7, 6, 1
1, 4, 2
1, 8, 9, 2
1, 5, 4, 1
1, 7, 8, 2
1, 8, 9, 2
1, 10, 17, 7, 1
1, 5, 6, 2
1, 10, 19, 12, 2
1, 10, 16, 7, 1
1, 10, 21, 11, 2
1, 9, 16, 9, 2
1, 13, 34, 26, 8, 1
1, 8, 15, 10, 2
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Christopher O'Neill, Sep 24 2018
STATUS
approved