Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jun 14 2020 12:48:50
%S 1,1,1,1,1,1,1,1,2,1,1,1,2,1,2,1,4,1,1,1,1,5,2,1,4,1,1,4,2,1,4,2,1,7,
%T 6,1,1,4,2,1,8,9,2,1,5,4,1,1,7,8,2,1,8,9,2,1,10,17,7,1,1,5,6,2,1,10,
%U 19,12,2,1,10,16,7,1,1,10,21,11,2,1,9,16,9,2,1,13,34,26,8,1,1,8,15,10,2,1,14,41,37,14,2
%N Irregular triangle read by rows: T(n,k) is the number of irreducible numerical semigroups with Frobenius number n and k minimal generators less than n/2.
%C The length of each row is floor((n+1)/2) - floor(n/3).
%C Summing rows yields A158206.
%C The expected number of minimal generators of a randomly selected numerical semigroup S(M,p) equals Sum_{n=1..M} ( p * (1 - p)^(floor(n/2)) * Product_{k>=0} T(n,k)*p^k ).
%H J. De Loera, C. O'Neill, and D. Wilbourne, <a href="https://arxiv.org/abs/1710.00979">Random numerical semigroups and a simplicial complex of irreducible semigroups</a>, arXiv:1710.00979 [math.AC], 2017.
%H C. Leng and C. O'Neill, <a href="https://arxiv.org/abs/1809.09915">A sequence of quasipolynomials arising from random numerical semigroups</a>, arXiv:1809.09915 [math.CO], 2018.
%H C. O'Neill, <a href="https://gist.github.com/coneill-math/c2f12c94c7ee12ac7652096329417b7d">The first 90 rows formatted as a triangle</a>
%e T(13,2) = 2, since {5,6,9} and {7,8,9,10,11,12} minimally generate irreducible numerical semigroups with Frobenius number 13.
%e When written in rows:
%e 1
%e 1
%e 1
%e 1
%e 1, 1
%e 1
%e 1, 2
%e 1, 1
%e 1, 2
%e 1, 2
%e 1, 4, 1
%e 1, 1
%e 1, 5, 2
%e 1, 4, 1
%e 1, 4, 2
%e 1, 4, 2
%e 1, 7, 6, 1
%e 1, 4, 2
%e 1, 8, 9, 2
%e 1, 5, 4, 1
%e 1, 7, 8, 2
%e 1, 8, 9, 2
%e 1, 10, 17, 7, 1
%e 1, 5, 6, 2
%e 1, 10, 19, 12, 2
%e 1, 10, 16, 7, 1
%e 1, 10, 21, 11, 2
%e 1, 9, 16, 9, 2
%e 1, 13, 34, 26, 8, 1
%e 1, 8, 15, 10, 2
%Y Cf. A008615, A158206.
%K nonn,tabf
%O 1,9
%A _Christopher O'Neill_, Sep 24 2018