|
|
A319609
|
|
Numbers in base 10 that are palindromic in bases 4, 8 and 16.
|
|
0
|
|
|
0, 1, 2, 3, 5, 170, 4095, 4097, 8194, 12291, 20485, 21845, 696490, 699050, 16777215, 16777217, 16781313, 16785409, 16789505, 33554434, 33558530, 33562626, 33566722, 50331651, 50335747, 50339843, 50343939, 83886085, 83906565, 89458005, 89478485
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
EXAMPLE
|
170 = 2222_4 = 252_8 = AA_16. Hence 170 is in the sequence.
|
|
MATHEMATICA
|
palQ[n_, b_] := PalindromeQ[IntegerDigits[n, b]];
Reap[Do[If[palQ[n, 4] && palQ[n, 8] && palQ[n, 16], Print[n]; Sow[n]], {n, 0, 10^6}]][[2, 1]] (* Jean-François Alcover, Sep 25 2018 *)
|
|
PROG
|
(Sage) [n for n in (0..100000) if Word(n.digits(4)).is_palindrome() and Word(n.digits(8)).is_palindrome() and Word(n.digits(16)).is_palindrome()]
(Magma) [n: n in [0..2*10^7] | Intseq(n, 4) eq Reverse(Intseq(n, 4)) and Intseq(n, 8) eq Reverse(Intseq(n, 8)) and Intseq(n, 16) eq Reverse(Intseq(n, 16))]; // Vincenzo Librandi, Sep 24 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|