login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342163
a(n) is the number of numbers greater than 1 and up to prime(n)^2 whose prime factors are all less than or equal to prime(n).
1
2, 6, 15, 29, 60, 87, 137, 176, 247, 360, 422, 568, 689, 776, 923, 1136, 1369, 1494, 1764, 1978, 2128, 2451, 2710, 3074, 3562, 3870, 4077, 4411, 4638, 4995, 6026, 6426, 6987, 7271, 8180, 8493, 9134, 9802, 10319, 11030, 11767, 12139, 13314, 13712, 14329, 14742
OFFSET
1,1
LINKS
FORMULA
a(n) = A184677(n) - 1.
EXAMPLE
For n=3, prime(3) = 5. Then the numbers up to 5^2 = 25 that have prime factors <= 5 are 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25. So a(3) = 15.
MAPLE
A[1]:= 2: p:= 2: P:= 1:
f:= proc(n) local x, y;
x:= n;
do
y:= igcd(x, P);
x:= x/y;
if x = 1 then return true fi;
if y = 1 then return false fi
od;
end proc:
for nn from 2 to 100 do
q:= p; p:= nextprime(p); P:= P*q;
A[nn]:= A[nn-1] + p + numboccur(true, map(f, [$q^2+1 .. p^2-1]))
od:
seq(A[i], i=1..100); # Robert Israel, Apr 06 2021
MATHEMATICA
Block[{nn = 46, w}, w = Array[FactorInteger[#][[All, 1]] &, Prime[nn]^2]; Table[-1 + Count[w[[1 ;; p^2]], _?(AllTrue[#, # <= p &] &)], {p, Prime@ Range@ nn}]] (* Michael De Vlieger, Mar 13 2021 *)
PROG
(PARI) forprime(n = 2, prime(35), i = 0; for(k = 2, n^2, v = factor(k)~[1, ]; if(vecmax(v) <= n, i++)); print1(i", "))
(PARI) a(n) = my(p=prime(n)); sum(k=2, p^2, vecmax(factor(k)[, 1]) <= p); \\ Michel Marcus, Mar 03 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Dimitris Valianatos, Mar 03 2021
EXTENSIONS
Definition clarified by Robert Israel, Apr 06 2021
STATUS
approved