login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342161
Expansion of the exponential generating function (tanh(x) - sech(x) + 1) * exp(x).
0
0, 1, 3, 4, -3, -14, 63, 274, -1383, -7934, 50523, 353794, -2702763, -22368254, 199360983, 1903757314, -19391512143, -209865342974, 2404879675443, 29088885112834, -370371188237523, -4951498053124094, 69348874393137903, 1015423886506852354, -15514534163557086903
OFFSET
0,3
LINKS
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. See Section 6 (zeroth column of matrix b_{n,k} on p. 19).
FORMULA
a(n) = A323834(n, 0).
a(n) = n! [x^n] (tanh(x) - sech(x) + 1) * exp(x).
a(n) = Sum_{i=1..n} binomial(n,i) * (-1)^floor((i-1)/2) * A000111(i).
MAPLE
series((2*exp(x)-2)/(exp(-2*x)+1), x, 30):seq(n!*coeff(%, x, n), n=0..24); # Peter Luschny, Mar 05 2021
PROG
(PARI) my(x='x+O('x^30)); concat(0, Vec(serlaplace((-1/cosh(x) + tanh(x) + 1)*exp(x)))) \\ Michel Marcus, Mar 05 2021
(SageMath)
def A323834List(prec):
R.<x> = PowerSeriesRing(QQ, default_prec=prec)
f = (2*exp(2*x)*(exp(x) - 1))/(exp(2*x) + 1)
return f.egf_to_ogf().list()
print(A323834List(25)) # Peter Luschny, Mar 05 2021
CROSSREFS
Sequence in context: A322359 A172990 A084252 * A287199 A332830 A288364
KEYWORD
sign
AUTHOR
Petros Hadjicostas, Mar 03 2021
STATUS
approved