login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323834
A Seidel matrix A(n,k) read by antidiagonals downwards.
3
0, 1, 1, 1, 2, 3, -2, -1, 1, 4, -5, -7, -8, -7, -3, 16, 11, 4, -4, -11, -14, 61, 77, 88, 92, 88, 77, 63, -272, -211, -134, -46, 46, 134, 211, 274, -1385, -1657, -1868, -2002, -2048, -2002, -1868, -1657, -1383, 7936, 6551, 4894, 3026, 1024, -1024, -3026, -4894, -6551, -7934, 50521, 58457, 65008, 69902, 72928, 73952, 72928, 69902, 65008, 58457, 50523
OFFSET
0,5
COMMENTS
The first row is a signed version of the Euler numbers A000111.
Other rows are defined by A(n+1,k) = A(n,k) + A(n,k+1).
LINKS
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. See Section 6 (matrix b_{n,k} on p. 19).
FORMULA
From Petros Hadjicostas, Mar 02 2021: (Start)
Formulas for the square array A(n,k) (n, k >= 0):
A(0,k) = (-1)^floor((k-1)/2)*A000111(k) for k > 0 with A(0,0) = 0.
A(n,k) = Sum_{i=0..n} binomial(n, i)*A(0,k+i) for n, k >= 0.
A(n,n)/2 = A(n+1,n) = +/- A000657(n) for n > 0.
Bivariate e.g.f.: Sum_{n,k >= 0} A(n,k)*(x^n/n!)*(y^k/k!) = (-sech(x + y) + tanh(x + y) + 1)*exp(x).
Formulas for the triangular array T(n,k) = A(k,n-k) (n >= 0, 0 <= k <= n):
T(n,k) = T(n-1,k-1) + T(n,k-1) for 1 <= k <= n with T(n,0) = (-1)^floor((n-1)/2) * A000111(n) for n > 0 and T(0,0) = 0.
T(n,k) = Sum_{i=0..k} binomial(k,i)*T(n-k+i,0) for 0 <= k <= n. (End)
EXAMPLE
Read as triangle T(n,k) = A(k, n-k) (n >= 0, k = 0..n), the first few antidiagonals of the square array A are:
0,
1, 1,
1, 2, 3,
-2, -1, 1, 4,
-5, -7, -8, -7, -3,
16, 11, 4, -4, -11, -14,
61, 77, 88, 92, 88, 77, 63,
-272, -211, -134, -46, 46, 134, 211, 274,
...
From Petros Hadjicostas, Mar 02 2021: (Start)
Square array A(n,k) (with rows n >= 0 and columns k >= 0) begins:
0, 1, 1, -2, -5, 16, 61, -272, -1385, ...
1, 2, -1, -7, 11, 77, -211, -1657, 6551, ...
3, 1, -8, 4, 88, -134, -1868, 4894, 65008, ...
4, -7, -4, 92, -46, -2002, 3026, 69902, -179806, ...
-3, -11, 88, 46, -2048, 1024, 72928, -109904, -3784448, ...
-14, 77, 134, -2002, -1024, 73952, -36976, -3894352, 5860016, ...
... (End)
PROG
(PARI) {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111.
c(n) = if(n==0, 0, (-1)^floor((n-1)/2)*b(n))
A(n, k) = sum(i=0, n, binomial(n, i)*c(k+i)) \\ Petros Hadjicostas, Mar 02 2021
CROSSREFS
Cf. A000111, A000657 (next-to-main diagonal), A323833.
Sequence in context: A017838 A181567 A058294 * A082868 A219539 A154556
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Feb 03 2019
EXTENSIONS
Typo corrected by and more terms from Petros Hadjicostas, Mar 02 2021
STATUS
approved