login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323833
A Seidel matrix A(n,k) read by antidiagonals upwards.
5
0, 1, 1, 1, 0, -1, -2, -3, -3, -2, -5, -3, 0, 3, 5, 16, 21, 24, 24, 21, 16, 61, 45, 24, 0, -24, -45, -61, -272, -333, -378, -402, -402, -378, -333, -272, -1385, -1113, -780, -402, 0, 402, 780, 1113, 1385, 7936, 9321, 10434, 11214, 11616, 11616, 11214, 10434, 9321, 7936
OFFSET
0,7
COMMENTS
The first row is a signed version of the Euler numbers A000111.
Other rows are defined by A(n+1,k) = A(n,k) + A(n,k+1).
LINKS
A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26. See Section 6 (matrix a_{n,k} on p. 18).
FORMULA
From Petros Hadjicostas, Mar 04 2021: (Start)
Formulas about the square array A(n,k) (n,k > 0):
A(n,0) = -A163747(n) = (-1)^(n+1)*A(0,n) = if(n==0, 0, (-1)^floor(n/2)*A000111(n)).
A(n,n) = 0 and A(n,k) + (-1)^(n+k)*A(k,n) = 0.
A(n, k) = Sum_{i=0..n} binomial(n, i)*A(0,k+i).
Joint e.g.f.: Sum_{n,k >= 0} A(n,k)*(x^n/n!)*(y^k/k!) = 2*exp(-y)*(1 - exp(-x - y)) / (1 + exp(-2*(x + y))) = 2*exp(x)*(exp(x+y) - 1) / (exp(2*(x+y)) + 1).
Formulas about the triangular array T(n,k) = A(n-k,k) (0 <= k <= n):
T(n+1,k+1) = T(n+1,k) - T(n,k).
T(n,k) = -(-1)^n*T(n,n-k).
T(n,k) = Sum_{i=0..n-k} binomial(n-k,i)*T(k+i,k+i) for k=0..n with initial condition T(n,n) = (-1)^n*A163747(n). (End)
EXAMPLE
Triangular array T(n,k) = A(n-k,k) (n >= 0, k = 0..n), read from the antidiagonals upwards of square array A:
0;
1, 1;
1, 0, -1;
-2, -3, -3, -2;
-5, -3, 0, 3, 5;
16, 21, 24, 24, 21, 16;
61, 45, 24, 0, -24, -45, -61;
-272, -333, -378, -402, -402, -378, -333, -272;
...
From Petros Hadjicostas, Mar 04 2021: (Start)
Square array A(n,k) (n, k >= 0) begins:
0, 1, -1, -2, 5, 16, -61, -272, 1385, ...
1, 0, -3, 3, 21, -45, -333, 1113, 9321, ...
1, -3, 0, 24, -24, -378, 780, 10434, -33264, ...
-2, -3, 24, 0, -402, 402, 11214, -22830, -480162, ...
-5, 21, 24, -402, 0, 11616, -11616, -502992, 1017600, ...
16, 45, -378, -402, 11616, 0, -514608, 514608, 31880016, ...
... (End)
PROG
(PARI) {b(n) = local(v=[1], t); if( n<0, 0, for(k=2, n+2, t=0; v = vector(k, i, if( i>1, t+= v[k+1-i]))); v[2])}; \\ Michael Somos's PARI program for A000111.
c(n) = if(n==0, 0, (-1)^floor(n/2)*b(n))
A(n, k) = sum(i=0, n, binomial(n, i)*c(k+i)) \\ Petros Hadjicostas, Mar 04 2021
CROSSREFS
Cf. A000111, A002832 (next-to-main diagonal), A163747, A323834.
Sequence in context: A008985 A326699 A138652 * A131899 A095174 A376676
KEYWORD
sign,tabl
AUTHOR
N. J. A. Sloane, Feb 03 2019
EXTENSIONS
More terms from Alois P. Heinz, Feb 09 2019
STATUS
approved