login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287199
Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 259", based on the 5-celled von Neumann neighborhood.
4
1, 3, 4, 3, 16, 15, 64, 63, 256, 255, 1024, 1023, 4096, 4095, 16384, 16383, 65536, 65535, 262144, 262143, 1048576, 1048575, 4194304, 4194303, 16777216, 16777215, 67108864, 67108863, 268435456, 268435455, 1073741824, 1073741823, 4294967296, 4294967295
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Appears to differ from A277800 only at a(1). - R. J. Mathar, May 25 2017
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, May 25 2017: (Start)
G.f.: (1 + 3*x - x^2 - 12*x^3 + 12*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
a(n) = 2^n for n>1 and even.
a(n) = 2^(n-1) - 1 for n odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 259; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, May 21 2017
STATUS
approved