Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 26 2017 13:47:14
%S 1,3,4,3,16,15,64,63,256,255,1024,1023,4096,4095,16384,16383,65536,
%T 65535,262144,262143,1048576,1048575,4194304,4194303,16777216,
%U 16777215,67108864,67108863,268435456,268435455,1073741824,1073741823,4294967296,4294967295
%N Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 259", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%C Appears to differ from A277800 only at a(1). - _R. J. Mathar_, May 25 2017
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A287199/b287199.txt">Table of n, a(n) for n = 0..126</a>
%H Robert Price, <a href="/A287199/a287199.tmp.txt">Diagrams of first 20 stages</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, May 25 2017: (Start)
%F G.f.: (1 + 3*x - x^2 - 12*x^3 + 12*x^5) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
%F a(n) = 2^n for n>1 and even.
%F a(n) = 2^(n-1) - 1 for n odd.
%F a(n) = 5*a(n-2) - 4*a(n-4) for n>3.
%F (End)
%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t code = 259; stages = 128;
%t rule = IntegerDigits[code, 2, 10];
%t g = 2 * stages + 1; (* Maximum size of grid *)
%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t ca = a;
%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t PrependTo[ca, a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k = (Length[ca[[1]]] + 1)/2;
%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y Cf. A287194, A287196, A287197.
%K nonn,easy
%O 0,2
%A _Robert Price_, May 21 2017