OFFSET
1,2
COMMENTS
To build the sequence, we start with a(1) = 1 and always extend it with the smallest integer not yet used, except in the case where the number is imposed by the constraint (i.e. if the index is nonprime). This fractal-like sequence takes arbitrarily large values.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000
FORMULA
a(prime(i)) = i + 1. - Michael S. Branicky, Mar 04 2021
EXAMPLE
Original sequence: 1,2,3,2,4,3,5,2,4,3,6,5,7,2,4,3,8,6,9,5,7,2,10,4,3
Erasing: 1,(2,3,)2,(4,)3,(5,)2,4,3,(6,)5,(7,)2,4,3,(8,)6,(9,)5,7,2,(10,)4,3
Non-erased: 1,( )2,( )3,( )2,4,3,( )5,( )2,4,3,( )6,( )5,7,2,( )4,3
The non-erased terms rebuild the original sequence.
PROG
(Python)
from sympy import isprime
def aupton(terms):
alst, idx = [1], 1
for n in range(2, terms+1):
if isprime(n): an = max(alst) + 1
else: an, idx = alst[idx], idx + 1
alst.append(an)
return alst
print(aupton(78)) # Michael S. Branicky, Mar 03 2021
(PARI) a(n) = while(n>1 && !isprime(n), n-=primepi(n)); primepi(n)+1; \\ Kevin Ryde, Mar 03 2021
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Jean-Marc Falcoz and Eric Angelini, Mar 03 2021
EXTENSIONS
a(26) and beyond from Michael S. Branicky, Mar 03 2021
STATUS
approved